期刊文献+

投影小波域MAP估计无源毫米波图像超分辨算法 被引量:2

Projected Wavelet-Domain MAP Estimation Super-resolution Algorithm for Passive Millimeter Wave Imaging
下载PDF
导出
摘要 在无源毫米波成像中,由于系统天线孔径大小的受限而使得成像的分辨率低。为了提高图像的分辨率,该文提出了一种投影小波域最大后验(MAP)估计毫米波图像超分辨算法(PWMAP)。该算法利用基于小波域广义高斯分布的MAP估计来恢复通带内的频谱;然后利用投影的非线性运算实现频谱外推。该算法不仅比以往的算法能提供更准确的先验建模,而且能在每步迭代时自适应地更新正则参数。实验结果验证了该算法的有效性。 In passive millimeter wave imaging,the problem of poor resolution of acquired image stems mainly from system antenna size limitations. In order to achieve resolution improvements,a Projected Wavelet-domain Maximum A Posteriori (PWMAP) estimation super-resolution algorithm is proposed in this paper. This algorithm restores the spectrum in the pass-band based on wavelet domain using the generalized Gaussian distribution and the MAP estimate; then extrapolate the spectrum by using the non-linear projection operation. This algorithm can not only provide a more accurate priori model than previous algorithms,but also updates the parameter adaptively at each iteration. Experimental results show the effectiveness and superiority of the algorithm.
出处 《电子与信息学报》 EI CSCD 北大核心 2010年第4期889-893,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60776823) 电子科技大学校青年基金(JX0823)资助课题
关键词 无源毫米波成像 超分辨 小波域 自适应 非线性运算 Passive millimeter wave imaging Super-resolution Wavelet-domain Adaptive method Non-linear operation
  • 相关文献

参考文献12

  • 1Lettington A H, Yallop M R, and Dunn D. Review of super-resolution techniques for passive millimeter-wave imaging[J]. Proceeding of SPIE, 2002, 4719: 203-239. 被引量:1
  • 2Ogawa Takahiro and Haseyama Miki. Adaptive reconstruction method of missing texture based on projection onto convex sets [C]. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, Hawaii, America, 2007. Vol.1: 1697-1700. 被引量:1
  • 3Zhao Zong-qing, Ding Yong-kun, and Dong Jian-jun, et al.. Richardson-Lucy method for decoding x-ray ring code image[J]. Plasma Physics and Controlled Fusion, 2007, 49(8): 1145-1150. 被引量:1
  • 4Hunt B R and Sementilli P. Description of a Poisson imagery super resolution algorithm[C]. Astronomical Data Analysis Software and Systems,San Francisco, America, 1992. Vol.25: 196-199. 被引量:1
  • 5Zheng Xin, Yang Ji-Yu, and Li Liang-cao, et al. Waveletbased super-resolution algorithms for passive millimeter wave imaging[C]. 2008 International Conference on Communication, Circuits and Systems(ICCCAS'08), Xia Men, China, May 2008, Vol.2: 927-930. 被引量:1
  • 6Mallat S. A theory for multiresolution signal decomposition: The wavelet representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693. 被引量:1
  • 7张新明,沈兰荪.在小波变换域内实现图像的超分辨率复原[J].计算机学报,2003,26(9):1183-1189. 被引量:10
  • 8王正明等著..SAR图像提高分辨率技术[M].北京:科学出版社,2006:314.
  • 9Eicke B. Iteration methods for convexly constrained ill-posed problems in Hilbert space [J]. Numerical Functional Analysis and Optimization, 1992, 13(5&6): 413-429. 被引量:1
  • 10Vonesch C and Unser M. A fast thresholded landweber algorithm for wavelet-regularized multidimensional deconvolution [J]. IEEE Transactions on Image Processing, 2008, 17(4): 539-549. 被引量:1

二级参考文献30

  • 1付丽华,李宏伟,张猛.基于小波变换的复杂噪声背景中谐波恢复方法[J].工程地球物理学报,2005,2(1):22-28. 被引量:10
  • 2Meyer Y.小波与算子[M].北京:世界图书出版社,1990.. 被引量:1
  • 3[1]Joshi R J,Fischer T R.Comparison of generalized Gaussian and laplacian modeling in DCT image coding[J].IEEE Trans.on signal processing letters,1995,2(5):81-82. 被引量:1
  • 4[2]Do M N,Vetteli M.Wavelet based texture retrieval using generalized Gaussian density and Kullback leibler distance[J].IEEE Trans.on image processing,2002,11(2):146-158. 被引量:1
  • 5[3]Mallat S.A theory for multiresolution signal decomposition:The wavelet representation[J].IEEE Trans.on Pattern Recognit Machine Intell,1989,11(7):674-693. 被引量:1
  • 6[4]Walden A T,Hosken J W J.The nature of the nonGaussianity of primary reflection coefficients and its significance for deconvolution[A].The 47th meeting of the EAEG,Budapest,1985.1038-1066. 被引量:1
  • 7[5]Cao J,Murara N.A stable and robust ICA algorithm based on T-distribution and generalized Gaussian distribution on model[A].Neural Networks for Signal Processing[C].New York:IEEE Press,1999,283-292. 被引量:1
  • 8[6]Stacy E W.A generalization of gamma distribution[J].Ann Math Stat,1962,28(3):1187-1192. 被引量:1
  • 9[7]James H M,John B T.Detectors for discrete-time signals in non-Gaussian noise[J].IEEE Trans on information Theory,1972,18(2):241-250. 被引量:1
  • 10[8]Kamran S,Alberto L G.Estimation of shape parameter for generalized Gaussian distribution in subband decompositions of video[J].IEEE Trans on circuits and systems for video technology.1995,5 (1):52 -56. 被引量:1

共引文献46

同被引文献24

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部