期刊文献+

端基对分子器件整流性质的影响 被引量:2

Effects of end groups on the rectifying performance in molecular devices
原文传递
导出
摘要 利用基于非平衡Green函数加密度泛函理论的第一原理方法,研究了以S(Se)为端基的三并苯环分子夹在两半无限长的Au电极之间构成双探针系统的输运特性,发现体系具有较好的整流效应,最大整流系数达到6;用H取代右端同一位置的一个S(Se),整流行为明显减弱.分析认为,这种整流是由于分子两端与电极的耦合不对称,使正负偏压下分子能级的移动和空间轨道分布不同所致.比较而言,S端基与电极的耦合导致的整流比Se强. Based on the density-functional theory and the non-equilibrium Greens function method,a theoretical study of the electron transport for the systems consisting of the terphenyl molecule connected to two Au electrodes through end-group S(Se) is carried out.The results show that these systems have good rectifying performance and the maximum rectification ratio may reach approximately 6 at a bias of 2.8 V.The rectifying behavior is reduced significantly when one of the two S(Se) atoms located at right end of the molecule is replaced by H.The asymmetric coupling between the molecule and the metal interface leads to different spatial distributions of the MPSH and different shifts of molecular orbital energy levels under positive and negative biases,which is the mechanism of rectifying performance.The systems with S end-groups have obvious rectifying performance because the interaction between S and Au electrode is stronger than that between Se and Au electrode.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2010年第4期2714-2720,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:60771059) 湖南省教育厅科技项目(批准号:08A005 08C110) 湖南省科技厅科技项目(批准号:2009wk3042) 长沙理工大学重点学科建设项目资助的课题~~
关键词 电子输运 整流行为 非平衡Green函数方法 electronic transport rectifying performance non-equilibrium Greens function method
  • 相关文献

参考文献4

二级参考文献73

  • 1邹斌,李宗良,王传奎,薛其坤.电极距离对分子器件电输运特性的影响[J].物理学报,2005,54(3):1341-1346. 被引量:16
  • 2[1]Allara D L, Dunbar T D, Weiss P S, Bumm L A, Cygan M T, Tour J M, Reine rt h W A, Yao Y, Kozaki M and Jones L 1998 Molecular Electronics:Science an d Tec hnology edited by Aviram A and Ratner M A, Annals of The New York Academy of S cience 852(New York Academy of Science, New York) 349 被引量:1
  • 3[2]Bumm L A, Arnold J J, Cygan M T, Dunbar T D, Burgin T P, Jones L, Allar a D L, Tour J M and Weiss P S 1996 Science 271 1705 被引量:1
  • 4[3]Reed M A, Zhou C, Muller C J, Burgin T P and Tour J M 1997 Science 278 252 被引量:1
  • 5[4]Chen J, Reed M A, Rawlett A M and Tour J M 1999 Science 286 1550Chen J, Wang W, Reed M A, Rawlett A M, Price D W and Tour J M 2000 Appl.Phys.Lett. 77 1224 被引量:1
  • 6[5]Reed M A and Tour J M 2000 Sci.Am. 6 45 被引量:1
  • 7[6]Mujica V, Kemp M and Ratner M A 1994 J.Chem.Phys. 101 6 849,6856 被引量:1
  • 8[7]Tian W, Datta S, Hong S, Reifenberger R, Henderson J I and Kubiak C P 1 998 J.Chem.Phys. 109 2874 被引量:1
  • 9[8]Ventra M D,Pantelides S T and Lang N D 2000 Phys.Rev.Lett. 84 979 被引量:1
  • 10[12]Becke A D 1988 Phys. Rev. A 38 3098Becke A D 1993 J.Chem.Phys. 98 1372Becke A D 1993 J.Chem.Phys. 98 5648 被引量:1

共引文献35

同被引文献2

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部