摘要
A two-degree-of-freedom model of iced, electrical quad bundle conductor is developed to comprehensively describe the different galloping behaviors observed. By applying centre manifold and invertible linear transformation, the co-dimension-2 bifurcation is analyzed. The relationships of parameters between this system and the original system are obtained to analyze and to control the galloping of the quad iced bundle conductor. The space trajectory, Lyapunov exponent and Lyapunov dimension are investigated via numerical simulation to present a rigorous proof of existence of chaos.
A two-degree-of-freedom model of iced, electrical quad bundle conductor is developed to comprehensively describe the different galloping behaviors observed. By applying centre manifold and invertible linear transformation, the co-dimension-2 bifurcation is analyzed. The relationships of parameters between this system and the original system are obtained to analyze and to control the galloping of the quad iced bundle conductor. The space trajectory, Lyapunov exponent and Lyapunov dimension are investigated via numerical simulation to present a rigorous proof of existence of chaos.
基金
Supported by the National Natural Science Foundation of China under Grant No 10872141, and the National Basic Research Program of China under Grant No 2007CB714000.