期刊文献+

一类具状态依赖时滞的微分系统解的渐近行为

ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO A SYSTEM OF DIFFERENTIAL EQUATIONS WITH STATE-DEPENDENT DELAYS
原文传递
导出
摘要 研究了一类具有状态时滞的微分方程系统解的渐近行为,获得了该系统每一个有界解当t→∞时都趋于常向量,所获得的结果改进和扩展了已有文献的相关结果. This paper investigates the asymptotic behavior of solutions to a system of differential equations with state-dependent delay. It is shown that every bounded solution of such a system tends to a constant vector as t -∞. The obtained improve and extend some existing results.
出处 《系统科学与数学》 CSCD 北大核心 2010年第3期392-397,共6页 Journal of Systems Science and Mathematical Sciences
基金 浙江省教育厅科研项目(20070605)资助
关键词 渐近行为 微分系统 状态依赖时滞 Ω-极限集 Asymptotic behavior, differential system, state-dependent delay, ω-limit set.
  • 相关文献

参考文献11

  • 1Longtin A, Milton J. Complex oscillations in the human pupil light reflex with mixed and delayed feedback. Math. Biosci., 1988, 90: 183-199. 被引量:1
  • 2Longtin A, Milton J. Modelling autonomous oscillations in the human pupil light reflex using nonlinear delay-differential equations. Bull. Math. Biol., 1989, 51: 609-624. 被引量:1
  • 3Maria Bartha. Convergence of solutions for an equation with state-dependent delay. Journal of Mathematical Analysis and Applications, 2001, 254: 410-432. 被引量:1
  • 4Driver R D. Existence theory for a delay-differential system. Contrib. Differential Equations, 1963, 1:317 336. 被引量:1
  • 5Belair J. Population models with state-dependent delays. Lecture Notes in Pure and Appl. Math., Dekker, New York, 1991. 被引量:1
  • 6Mackey M C. Commodity price fluctuations: Price dependent delays and nonlinearities as explanatory factors. J. Econom. Theory, 1989, 48: 497-509. 被引量:1
  • 7Mallet-Paret J, Nussbaum R D. A differential-delay equation arising in optics and physiology. SIAM J. Math. Anal., 1989, 20: 249-292. 被引量:1
  • 8Terjeki J, Bartha M. On the convergence of solutions for an equation with state-dependent delay. Differential Equations and Dynamical Systems, 2006, 14: 195-206. 被引量:1
  • 9Yi T S, Huang L H. Convergence for pseudo monotone semiflows on product ordered topological spaces. J. Differential Equations, 2005, 214: 429-456. 被引量:1
  • 10Hale J, Verduyn Lunel S M. Introduction to Functional Differential Equations. Springer-Verlag, New York, 1993. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部