摘要
研究了一类具有状态时滞的微分方程系统解的渐近行为,获得了该系统每一个有界解当t→∞时都趋于常向量,所获得的结果改进和扩展了已有文献的相关结果.
This paper investigates the asymptotic behavior of solutions to a system of differential equations with state-dependent delay. It is shown that every bounded solution of such a system tends to a constant vector as t -∞. The obtained improve and extend some existing results.
出处
《系统科学与数学》
CSCD
北大核心
2010年第3期392-397,共6页
Journal of Systems Science and Mathematical Sciences
基金
浙江省教育厅科研项目(20070605)资助
关键词
渐近行为
微分系统
状态依赖时滞
Ω-极限集
Asymptotic behavior, differential system, state-dependent delay, ω-limit set.