摘要
目的观察压力控制通气模式和容量控制通气模式下不同潮气量(VΥ)水平对脉搏指示连续心排血量(PiCCO)监测时容量参数的影响。方法5只绵羊镇静麻醉后行气管切开接呼吸机辅助呼吸。在双水平气道正压(BiPAP)通气模式下,调整吸气压使VΥ分别维持于6、10、15、20ml/kg,其他呼吸机支持条件不变,将呼吸机模式改为同步间歇指令通气(SIMV),分别调节VT于6、10、15、20ml/kg各维持20min,监测中心静脉压(CVP)及心功能。结果①在两种模式条件下,心排血指数(CD、胸腔内血容量指数(ITBVI)随VΥ水平升高而减小,VΥ为15ml/kg(SIMV模式:CI(3.94±1.03)L·min^-1·m^-1,ITBVI(707±105)ml/m2;BiPAP模式:CI(4.11±1.11)L·min^-1·m^-1,ITBVI(715±122)ml/m2]和20ml/kg时[SIMV模式:CI(3.87±1.04)L·min^-1·m^-2,ITBVI(705±116)ml/m2;BiPAP模式:CI(3.64±0.96)L·min6-1·m^-2,ITBVI(694±114)ml/m2]与6ml/kg时(SIMV模式:CI(4.96±1.58)L·min^-1·m^-2,ITBVI(811±169)ml/m^2;BiPAP模式:CI(5.67±1.96)L·min-1·m^-2,ITBVI(823±182)ml/m^2]比较差异均有统计学意义(均P〈0.05);外周血管阻力指数(sVRI)、平均气道压(Pmean)随着VΥ水平升高而增加,VΥ为15ml/kg[SIMV模式:SVRI(237.6±56.2)kPa·S^-1·L^-1,Pmean(14.0±3.2)cmH20(1cmH2O=0.098kPa);BiPAP模式:SVRI(230.8±32.9)kPa·S^-1·L^-1,Pmean(13.0±2.2)cmH2O;和20ml/kg时(sIMV模式:sVRI(253.1±76.7)kPa·S^-1·L^-1,Pmean(18.2±4.8)cmH2O;BiPAP模式:SVRI(246.7±48.8)kPa·S-1·L^-1,Pmean(16.8±3.3)cmH2O]与6ml/kg时[SIMV模式:SVRI(184.8±47.5)kPa·S^-1·L^-1,Pmean(8.8±1.6)cmH2O;BiPAP模式:SVRI(184.5±51.5)kPa·S^-1·L^-1,Pmean(8.6±0.5)cmH2O]比较差异均有统计学意义(均P〈0.05);而CVP、心率(HR)、平
Objective To compare the influence of pulse indicator continuous cardiac output (PiCCO) in monitoring tidal volume (VT) under pressure control ventilation mode and volume-controlled ventilation mode in sheep. Methods After anesthesia and tracheotomy, 5 sheep, which were apneic and receiving mechanical ventilation. Twenty minutes later, central venous pressure (CVP) and cardiac function were monitored with different selected V'r levels of 6, 10, 15, 20 ml/kg under bi-level positive airway pressure (BiPAP) mode by changing the pressure of inspiration, or under the synchronized intermittent mandatory ventilation (SIMV) mode with the same ventilation conditions. Results In both modes, the increase in VT led to an decrease of cardiac index (CI) and intrathoracic blood volume index (ITBVI), reaching a statistically significant difference at 15 ml/kg (SIMV mode:CI(3.94±1.03)L·min^-1·m^-1,ITBVI(707±105)ml/m2;BiPAP mode: CI(4.11±1.11)L·min^-1·m^-1,ITBVI(715±122)ml/m2]and 20ml/kg [SIMV mode=CI(3.87±1.04)L·min^-1·m^-2,ITBVI(705±116)ml/m2;BiPAP mode: CI(3.64±0.96)L·min6-1·m^-2,ITBVI(694±114)ml/m2] 6ml/kg [SIMV mode: CI(4.96±1.58)L·min^-1·m^-2,ITBVI(811±169)ml/m^2;; BiPAP mode..CI(5.67±1.96)L·min-1·m^-2,ITBVI(823±182)ml/m^2], all P〈0. 05]; an increase in systemic vascular resistance index (SVRI) and mean airway pressure (Pmean) at 15 ml/kg (SIMV mode: SVRI(237.6±56.2)kPa·S^-1·L^-1,Pmean(14.0±3.2)cmH20(1cmH2O=0.098kPa); BiPAP mode . SVRI (230.8± 32.9) kPa·s-1· L-1, Pmean (13.0± 2.2) cm H2O] and 20 ml/kg (SIMV mode: SVRI (253.1±76.7) kPa·s-1·L-1, Pmean (18.2d: 4. 8) cm H20; BiPAP mode.. SVRI (246.7±48.8) kPa·s-1· L-1, Pmean (16.8±3.3) cm H2O] compared with 6ml/kg [SIMV mode.. SVRI (184.8±47.5)kPa·s-1· L-1 Pmean (8.8±1.6)cm H2O; BiPAP mode: SVR[ (184.5±51.5) kPa· s-1· L^-1, Pmean (8.6±0.5) cm H2O, all P〈0.05]; but there w
出处
《中国危重病急救医学》
CAS
CSCD
北大核心
2010年第3期146-149,共4页
Chinese Critical Care Medicine
基金
天津市医药卫生项目(07KZ15)