摘要
利用运动方程来描述在外界环境的作用下系统的动力学行为,运动方程在变化过程中和临界区域的可能解具有两种不同结构。然后分两种结构分析朗之万的解的可能形式。在研究了宏观变量的平均值及概率分布的时间变化后得到结论:任一函数在定态系综中的系综平均值与沿着一条朗之万径迹所取得的时间平均值是相等的。
The paper attempts to give a description of dynamical action under the effect of environment via dynamical equation and the two different configurations of the possible solutions of dynamical equation in a critical area; and then it makes an analysis of the possible forms of the Langevin values from the two configurations. By the analysis of the mean values of macrovarialbe and the changing time of the distribution of probability, it has been concluded in the paper that the mean value of any random function is equal to the mean value of time gained through the track of Langevin.
出处
《科技通报》
北大核心
2010年第2期313-317,共5页
Bulletin of Science and Technology
关键词
朗之万方程
临界区域
分岔理论
Langevin equation
boundary district
bifurcation theory