摘要
研究一类脉冲向量时滞抛物型偏微分方程的振动性,借助Domslak引进的H-振动的概念及内积降维的方法,将多维振动问题化为一维脉冲时滞微分不等式不存在最终正解的问题,建立了该类方程在Robin边值条件下所有解H-振动的若干充分条件,这里H是RM中的单位向量.
The oscillations of a class of impulsive vector parabolic partial differential equations with delays are studied. To change the multi-dimensional oscillation problems into the problems of which one-dimensional impulsive delay differential inequalities have not eventually positive solution by employing the concept of H -oscillation introduced by Domslak and the method of reducing dimension with scalar product, some sufficient conditions for H -oscillation of all solutions of the equations are established under Robin boundary value condition, where H is a unit vector of R^M .
出处
《应用泛函分析学报》
CSCD
2010年第1期39-42,共4页
Acta Analysis Functionalis Applicata
基金
湖南省教育厅科研计划项目(07C164)
关键词
脉冲
向量
时滞
抛物型偏微分方程
H-振动性
impulse
vector
delay
parabolic partial differential equation
H -oscillation