期刊文献+

基于修正IEKF的IRST系统多站融合跟踪 被引量:9

Modified iterated extended Kalman filter based multi-observer fusion tracking for IRST
下载PDF
导出
摘要 针对红外搜索跟踪(infrared search and track,IRST)系统单站情况下的弱可观测强非线性问题,提出了一种基于修正迭代扩展卡尔曼滤波(modified iterated extended Kalman filter,MIEKF)的多站融合跟踪算法。按照高斯-牛顿迭代方法对IEKF中的测量更新进行修正,并推导了最大似然迭代终止条件,减小了非线性滤波的线性化误差。结合集中式融合跟踪算法,应用于IRST系统多站目标跟踪。以三站为例进行仿真研究,结果表明所提算法的跟踪性能要优于EKF和UKF。 Aiming at the weakly observability and highly nonlinearity of a single observer of infrared search and track(IRST) systems,a multi-observer fusion tracking algorithm based on modified iterated extended Kalman filter(MIEKF) is proposed.The IEKF is modified by providing a new measurement update with Gauss-Newton iteration algorithm,then an iterative termination condition is deduced based on a maximum likelihood criterion,thus the linearity error is reduced.Finally the MIEKF combining with the central fusion tracking algorithm is applied to multi-observer target tracking of IRST.Simulation results show that the proposed algorithm is better than EKF and UKF for a three-observer target tracking system.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2010年第3期504-507,共4页 Systems Engineering and Electronics
基金 国家自然科学基金(60871074)资助课题
关键词 目标跟踪 迭代扩展卡尔曼滤波 高斯牛顿迭代 红外搜索跟踪系统 target tracking iterated extended Kalman filter Gauss-Newton iteration infrared search and track
  • 相关文献

参考文献12

  • 1Bar-shalom Y, Li X R. Multitarget-multisensor tracking : principlesand techniques[M]. Storrs: YBS Publishing, 1995. 被引量:1
  • 2Bar-shalom Y, Li X R, Kirubarajan T. Estimation with application to tracking and navigation: theory, algorithm, and software[M]. New York:Wiley,2001. 被引量:1
  • 3Merwe van der R. Sigma-point Kalman filters for probabilistic inference in dynamic state-space models[D]. Portland: Oregon Health Sciences University,2004. 被引量:1
  • 4Song T, Speyer J. A stochastic analysis of a modified gain extended Kalman filter with applications to estimation with bearings only measurements[J]. IEEE Trans. on Automatic Control, 1985,30(10) : 940 - 949. 被引量:1
  • 5Galkowski P J, Islam M A. An alternative derivation of modified gain function of song and speyer[J]. IEEE Trans. on Automatic Control, 1991,36(11) : 1322 - 1326. 被引量:1
  • 6Guo F, Sun Z, Huangfu K. A modified covariance extended Kalman filtering algorithm in passive location [C]//Proc. of the IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, 2003 : 307 - 311. 被引量:1
  • 7Julier S J, Uhlmann J K. A new method for the nonlinear transformation of means and covarianees in filters and estimators[J]. IEEE Trans. on Automatic Control, 2000,45 (3) : 477 - 482. 被引量:1
  • 8韩崇昭..多源信息融合[M].北京:清华大学出版社,2006:488.
  • 9李达,李少洪.一种新的地心地固坐标系传感器配准算法[J].系统工程与电子技术,2007,29(1):143-146. 被引量:4
  • 10Bell B M, Cathey F W. The iterated Kalman filter update as a Gauss-Newton method[J]. IEEE Trans. on Automatic Control ,1993, 38(2) : 294 - 297. 被引量:1

二级参考文献18

  • 1郭福成,孙仲康.三维机动辐射源的单站无源跟踪方法[J].现代雷达,2005,27(3):5-8. 被引量:11
  • 2Leung H,Blanchette M,Harrison C.A least squares fusion of multiple radar data[C]∥ Proceedings of RADAR′-94,1994:364-369. 被引量:1
  • 3Blackman S,Popoli R.Design and analysis of modern tracking systems[M].Dedham,MA:Artech House,1999. 被引量:1
  • 4McMichael D,Okello N.Maximum likelihood registration of dissimilar sensors[C]∥ Proceedings of the First Australian Data Fusion Symposium,Australia,1996:31-34. 被引量:1
  • 5Zhou Y,Leung H,Yip M.An exact maximum likelihood algorithm for data fusion[J].IEEE Trans.on Signal Prcessing,1997,45(6):1560-1572. 被引量:1
  • 6Karniely H,Siegelmann H T.Sensor registration using neural networks[J].IEEE Trans.on Aerospace and Electronic Systems,2000,36(1):85-101. 被引量:1
  • 7Leung H,Blanchette M,Gault K.Comparison of registration error correction techniques for air surveillance radar network[C]∥ SPIE Proc.Signal Data Processing Small Targets,1995:498-508. 被引量:1
  • 8Ristic B,Okello N.Sensor registration in ECEF coordinates using the MLR algorithm[C]∥ Proc.of the 6th International Conference on Information Fusion,2003:135-142. 被引量:1
  • 9Zheng Ziwei,Zhu Yisheng.New least squares registration algorithm for data fusion[J].IEEE Trans.on Aerospace and Electronics Systems,2004,40(4):1410-1416. 被引量:1
  • 10Wolf M A.Numerical methods for unconstrained optimization an metroduction[M].Van Nostrand Reinbold Company,1978. 被引量:1

共引文献12

同被引文献54

引证文献9

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部