期刊文献+

基于有限混合模型的脑MR图像分割算法 被引量:1

An adaptive finite mixture mode for brain MR Image Segmentation
下载PDF
导出
摘要 MR图像中常含有偏移场以及噪声现象,传统的FM模型无法得到正确的分类。本文在FM目标函数中加入偏移场估计和噪声去除,完善其分类效果,使分类结果较好地克服偏移场和噪声影响。实验表明,本文算法在得到较准确的分类结果的同时还能很好地估计偏移场。 The classical FM model can't get the precise classification results of magnetic resonance images, which is polluted by bias and noises.In order to overcome this limitation of FM, bias estimation and noise remove are incorporated in FM model.The new model can reduce the effect of bias and noise.Experiments on the segmentation of magnetic resonance images show this model has better effect in image segmentation, and can get the estimated bias at the same time.
出处 《微计算机信息》 2010年第8期202-204,共3页 Control & Automation
关键词 有限混合模型 偏移场 去噪 Finite mixture mode bias noise remove
  • 相关文献

参考文献1

二级参考文献9

  • 1马华,王清,张永.基于改进FCM的医学图像分割[J].微计算机信息,2006,22(03S):241-242. 被引量:13
  • 2祖克举,周昌雄.基于方向气球力活动轮廓模型的图像分割[J].微计算机信息,2006,22(10X):301-303. 被引量:3
  • 3[3]Osher S.Sethian J A.Fronts propagating with curvature dependent speed:algorithms based on the Hamilton-Jacobi formulation[J].Journal of Computational Physics.1988,79(I):12-49 被引量:1
  • 4[4]D.Adalsteinsson and J.A.Sethian.A.Fast Level Set Method for Propagation Interfaces.Journal of Computational Physics,1995,118(2):269-277 被引量:1
  • 5[5]D.Adalsteinsson and J.A.Sethian,The fast construction of extension velocities in level set methods[J].J.Comput.Phys.1999,148:2-22. 被引量:1
  • 6[6]Gomes J.Faugeras O.Reconciling Distance Functions and Level Sets[J].Journal of Visional Communication and Image Representation,2000,209-233 被引量:1
  • 7[7]D.M.Titterington,A.F.M.Smith,U.E.Markov.Statical analysis of finite mixture distributions.New York:John Wiley,1985. 被引量:1
  • 8[8]Redner JA,Walker AK.Mixture density,maximumlikelihood andthe EM algorithm[J].SIAM Review,1984,26(2):195~239. 被引量:1
  • 9[9]Weickert.J Coherence-enhance diffusionfiltering.The International Journal of Computer Vision,1999,10(3):111~127 被引量:1

共引文献9

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部