期刊文献+

基于二维不可分小波相关性分析的虹膜识别 被引量:2

Iris recognition based on correlation of 2-D nonseparable wavelet
原文传递
导出
摘要 为了更有效地提取虹膜纹理特征区域和进一步减小虹膜特征的存储空间,提出了一种基于分块相关性分析的二维不可分B-样条小波的虹膜识别方法,通过对虹膜归一化图像进行二维不可分B-样条小波变换并提取小波系数特征,把这些特征等分成正方形的特征块并按照相关性由大到小排序,保留相关性大的特征块进行匹配。实验表明,本文算法比经典的虹膜识别方法能更准确地捕捉识别效果好的特征区域。 In order to reduce storage space for saving iris feature and extract features efficiently for the iris texture, a correlation-based 2-D nonseparable B-spline wavelet transform approach is proposed for iris recognition. The proposed iris recognition algorithm extracts wavelet coefficients features from the normalized iris images by 2-D nonseparable Prspline wavelet transform, divides these features into square feature blocks equally, sorts the feature blocks in descending order, and preserves the feature blocks with large correlation value to match. Experiments show that the proposed algorithm can capture feature areas of good recognition performance more accurately than the classical iris recognition algorithms.
作者 苑玮琦 王浩
出处 《光电子.激光》 EI CAS CSCD 北大核心 2010年第4期593-597,共5页 Journal of Optoelectronics·Laser
基金 国家自然科学基金资助项目(60672078)
关键词 虹膜识别 小波 不可分 B-样条 相关性 iris recognition wavelet nonseparable B-spline correlation
  • 相关文献

参考文献20

  • 1Hallinan P W. Recognition human eyes[J].geometric methods computer vision, 1991,1570:214-226. 被引量:1
  • 2Anil K Jain. Biometrics personal identification in networked seciety[M]. Kluwer Academic Publishers, London, UK, 1999. 25. 被引量:1
  • 3Flom F, Safir A. Iris Recognition System[P]U.S Patent. 4641349,1987. 被引量:1
  • 4John Daugman. How iris recognition works[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004,14 (1) :21-30. 被引量:1
  • 5Richard P W. Iris recognition: an emerging biometric technology[J].Proceeding of IEEE, 1997,85(9) :1348-1363. 被引量:1
  • 6Boles W W, Boashah B. A human identification technique using images of the iris and wavelet transform[J]. IEEE Transactions on Signal Processing,1998,46(4) :1185-1188. 被引量:1
  • 7Lim S, Lee K, Byeon O, et al. Efficient iris recognition through improvement of feature vector and classifier[J]. ETRI Journal, 2001,23(2):61-70. 被引量:1
  • 8Ma L, Tan T, Wang Y,et al. Efficient iris recognition by characterizing key local variations[J]. IEEE Transactions Image Processing, 2004,13(6) : 739-750. 被引量:1
  • 9Belcher C, Du Y. Region-based SIFT approach to iris recognition[J].Optics and Lasers in Engineering, 2009,47(1) : 139- 147. 被引量:1
  • 10LIU Xin-liang, LI Xing-ye. A multi-scale iris feature extraction algorithm based on radon transform[J].光电子·激光, 2008, 19 ( 4 ) : 533-536. 被引量:1

二级参考文献18

共引文献4

同被引文献18

  • 1苑玮琦,徐露,林忠华.一种基于人眼图像灰度分布特征的虹膜定位算法[J].光电子.激光,2006,17(2):226-230. 被引量:19
  • 2姚鹏,叶学义,庄镇泉,吴亮,李斌.基于局部频率特征和局部方向特征的虹膜识别算法[J].电子学报,2007,35(4):663-667. 被引量:6
  • 3Jaina, Boiler, Pamkantis. Biometrics :personal identification in networked society [ M ]. KluwerAcademic Publishers. 1999 : 1241. 被引量:1
  • 4Daugman J G. The importance of being random : Statistical principles of iris recognition [ J ]. Pattern Recognition,2003,36 (2) :279 - 291. 被引量:1
  • 5Wildes R P. Iris Recognition:An Emerging Biometric Technology [ C ]//Proceedings of the IEEE,1997,85(9) :1348 - 1363. 被引量:1
  • 6Boles W W, Boashah B. A Human Identification Technique Using Images of the Iris and Wavelet Transform [J]. IEEE Trans. on Signal Processing, 1998,46 ( 4 ) : 1185 - 1188. 被引量:1
  • 7Lim S,Lee K,Byeon O,et al. Efficient Iris Recognition through Improvement of Feature Vector and Classifier[J]. ETRI Journal ,2001,23 (2) :61 -85. 被引量:1
  • 8You X,Chen Q,Tang Y Y. Construction of Non-Tensor Product Wavelet and Its Application. Technical Report[R]. Department of Computer Seienee ,Hong Kong Baptist University,2007. 被引量:1
  • 9You X,Zhang D ,Chen Q. Face Presentation by Using Non-tensor Product Wavelets [C]//Proceedings of the 18th International Conference on Pattem Recognition ,2006:503 - 506. 被引量:1
  • 10Institute of Automation, Chinese Academy of Sciences. ASIA iris Image Database ( ver1.0 ) [DB/ OL] ( 2004 ). http://www. sinobiometrics. com. 被引量:1

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部