期刊文献+

基于图像噪声分析的计算机生成图像检测算法 被引量:8

Identifying computer generated images based on analysis of image noise
原文传递
导出
摘要 计算机生成图像与自然图像在物理生成机理上的差异性导致其在噪声分布上具有明显的区别,据此提出一种基于图像噪声分析的计算机生成图像检测新方法。首先,用小波隐马尔可夫(MMT)模型对图像噪声进行预处理;接着,基于最大似然估计方法估测图像参考模式噪声;最后,在提取图像模式噪声统计距及其与参考模式噪声相关差值基础上,利用支持向量机(SVM)分类器进行鉴别。实验结果显示,较已有的典型算法,该算法具有更好的检测率。 The discrimination of computer generated images from real images becomes more and more important.A novel digital forensics technique to distinguish computer generated images from real images is proposed based on the differences in the noise distribution of images.More specifically,at first,image noise is preprocessed using wavelet-domain hidden Markov tree models,and then the pattern noise is estimated relying on maximum likelihood estimate,finally,feature vectors are extracted such as statistics and differential correlation coefficient which will be classified by SVM.The experiment results show that this method offers a significant improvement in the performance compared with existing typical methods.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2010年第2期293-297,共5页 Journal of Optoelectronics·Laser
基金 国家"863"计划资助项目(2007AA01Z455) 国家自然科学基金资助项目(60772098 60772042) 教育部新世纪优秀人才支持计划资助项目(NCET-0600393) 2007年上海市曙光计划资助项目
关键词 计算机生成图像鉴别 模式噪声 小波域隐马尔科夫(MMT)模型 统计矩 相关差值系数 computer generated image identification pattern noise wavelet-domain HMT statistics differential correlation coefficient
  • 相关文献

参考文献10

  • 1Lyu S,Farid H. How realistic is photorealistic[J].IEEE Transactions on Signal Processing, 2005,53 (2) : 845-850. 被引量:1
  • 2Yin Wang, Pierre Moulin. On discrimination between photorealistic and photograph images[A]. IEEE International Conference on Acoustics,Speech and Signal Processing[C]. IEEE,May 2006,2:161-164. 被引量:1
  • 3Dehnie S,Sencar T H,Memon N D,Digital image forensics for identifying computer generated and digital camera images[A]. IEEE International Conference on Image Processing[C]. 2006,2313-2316. 被引量:1
  • 4CUIXia-rong SUGuang-da.Identification of digital image origin based on the pattern noise.光电子.激光,2007,18(12):1239-1243. 被引量:1
  • 5Tsin Y,Ramesh V, Kanade T. Statistical calibration of CCD imaging process[A]. IEEE International Conference on Computer Vision[C]. 2001,1 : 480-487. 被引量:1
  • 6Crouse M,Nowak R,Baraniuk R. Wavelet-based statistical signal processing using hidden markov rnodels[J]. IEEE Transactions on Signal Processing, 1998,42(4):886-902. 被引量:1
  • 7Hsu C W, Chang C C, Lin C J. A practical guide to support vector classification, http://www, csie. ntu. edu. tw/-cjlin/papers/guide/ guide, pdf. 被引量:1
  • 8Chih-Chung Chang,Chih-Jen Lin. LIBSVM:a library for support vector machines,2001, Software available at http://www, csie. ntu. edu. tw/-cjlin/libsvm. 被引量:1
  • 9http: //www. ee. oolumbia, edu/In/dvrnm/downloads/PIM-PRCG- datasel/. 被引量:1
  • 10http://www. 3dlinks. com/. 被引量:1

同被引文献96

  • 1王波,孔祥维,尤新刚,付海燕.利用协方差矩阵检测CFA插值的相机来源鉴别方法[J].光电子.激光,2009,20(4):517-520. 被引量:3
  • 2尚政国,赵春晖,孙岩,刘金梅.非降采样Contourlet图像边缘检测算法[J].光电子.激光,2009,20(4):525-529. 被引量:10
  • 3Qiu B, Prinet V, Perrier E, et al. Multi-block PCA method for image change detection[A]. Image Analysis and Processing, 2003. Proceedings. 12th International Conference on[C]. Man- tova, Italy, 2003,385-390. 被引量:1
  • 4Bazi Y, Bruzzone L, Melgani F. Automatic identificationof the number and values of decision thresholds in the log-ratio image for change detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters,2006,3(3) :349-353. 被引量:1
  • 5Ranney K I,Soumekh M. Signal subspace change detection in averaged multilook SAR imagery[J]. IEEE Transactions on Ge- osc ence and Remote Sens ng, 2006,44(1) : 201-213. 被引量:1
  • 6Carincotte C,Derrode S,Bourennane S. Unsupervised change detection on SAR images using fuzzy hidden markov chains[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(2) :432-441. 被引量:1
  • 7Ghosh S, Bruzzone L, Patra S,et al. A context-sensitive tech- nique for unsupervised change detection based on Hopfield- type neural networksEJ~. IEEE Transactions on Geoscience and Remote Sensing, 2007,45 (3) : 778-789. 被引量:1
  • 8Bovolo F, Bruzzone L, MarconcJni M. A novel approach to unsu- pervised change detection based on a semisupervised SVM and a similarity Measure[J]. IEEE Transactions on Geoscience and Remote Sensing,2008,46(7) .2070-2082. 被引量:1
  • 9Pacifici Fabio, Fabio Frate Deh Emery William J. Pulse coupled neural networks for detecting urban areas changes at very high resolutionsr[A]. Urban Remote Sensing Event,2009 Jointr[C]. Shanghai, China, 2009,1-7. 被引量:1
  • 10Turgay Celik. Unsupervised Change Detection in Satellite Ima- ges Using Principal Component Analysis and k-Means Cluste- ring[J]. IEEE Geoscience and Remote Sensing Letters, 2009,6 (4) :772-776. 被引量:1

引证文献8

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部