期刊文献+

结构相似度稀疏编码及其图像特征提取 被引量:5

Structural Similarity Sparse Coding and Image Feature Extraction
原文传递
导出
摘要 将结构相似度引入到稀疏编码模型中,提出基于结构相似度的稀疏编码模型.基于该模型提取出图像的稀疏编码特征.实验结果表明,改进后的稀疏编码模型更好地保持了结构信息,更加符合人眼视觉系统特性.将文中提出的模型应用到特征提取中,可获得结构信息保持得更好的图像特征. The structural similarity is introduced into sparse coding model, and a sparse coding model based on structural similarity is proposed. Then, the model is employed to extract the image sparse coding feature. The experimental results show that the improved sparse coding model is consistent with human visual system for its capacity of structural information preservation. Furthermore, compared with the standard sparse coding model, the proposed model attains the reconstructed image which preserves better structural information of the original image.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2010年第1期17-22,共6页 Pattern Recognition and Artificial Intelligence
基金 国家973计划项目(No.2007CB311004) 国家863计划项目(No.2007AA01Z132) 国家科技支撑计划项目(No.2006BAC08B06) 国家自然科学基金项目(No.60805041)资助
关键词 特征提取 稀疏编码 结构相似度 基函数 图像重构 Feature Extraction, Sparse Coding, Structural Similarity, Basis Function, Image Reconstruction
  • 相关文献

参考文献13

  • 1Field D J. What Is the Goal of Sensory Coding? Neural Computation, 1994, 6(4) : 559 -601. 被引量:1
  • 2Olshausen B A, Field D J. Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for Natural Images. Nature, 1996, 381(6583): 607-609. 被引量:1
  • 3Hyvarinen A, Hoyer P O. A Two-Layer Sparse Coding Model Learns Simple and Complex Cell Receptive Fields and Topography from Natural Images. Vision Research, 2001, 41(18): 2413-2423. 被引量:1
  • 4Grimes D B, Rao R P N. Bilinear Sparse Coding for Invariant Vision. Neural Computation, 2005, 17( 1 ) : 47 -73. 被引量:1
  • 5Hoyer P O. Non-Negative Matrix Factorization with Sparseness Constraints. Journal of Machine Learning Research, 2004, 5 (12): 1457 - 1469. 被引量:1
  • 6Malo J, Epifanio I, Navarro R, et al. Non-Linear Image Representation for Efficient Perceptual Coding. IEEE Trans on Image Processing, 2006, 15(1) : 68 -80. 被引量:1
  • 7Li Qingyong, Lin Dacheng, Shi Zhongzhi. Task-Oriented Sparse Coding Model for Pattern Classification// Proe of the International Conference on Advances in Natural Computation. Changsha, China,2005 : 903 -914. 被引量:1
  • 8Liao Lingzhi, Luo Siwei, Tian Mei, et al. Fast and Adaptive Low- Pass Whitening Filters for Natural Images//Proc of the Internation- al Conference on Neural Information Processing. Hongkong, China, 2006 : 343 - 352. 被引量:1
  • 9孙俊,王文渊,卓晴.基于稀疏编码的提取人脸整体特征算法[J].清华大学学报(自然科学版),2002,42(3):411-413. 被引量:3
  • 10Liu Weixiang, Zheng Nanning. Learning Sparse Features for Classification by Mixture Models. Pattern Recognition Letters, 2004, 25 (2) : 155 -161. 被引量:1

二级参考文献5

  • 1Turk M,Pentland A.Eigenfaces for recognition [J].J of Cognitive Neuroscience,1991,3(1):71-86. 被引量:1
  • 2Field D J.What is the goal of sensory coding? [J].Neural Computation,1994,6(4):559-601. 被引量:1
  • 3Olshausen B A,Field D J.Emergence of simple-cell receptive-field properties by learning a sparse code for natural images [J].Nature,1996,381:607-609. 被引量:1
  • 4Olshausen B A,Field D J.Sparse coding with an overcomplete basis set:a strategy employed by V1? [J].Vision Research,1997,37(23):3311-3325. 被引量:1
  • 5SUN Jun,ZHUO Qing,MA Chengyuan,et al.Sparse coding with clustering property and its application to face recognition [J].Pattern Recognition,2001,34(9):184-185. 被引量:1

共引文献2

同被引文献42

  • 1Zm"eiriou S, Tzimirnpoulos G, Petrol M, et al. Regularized kernel dis- criminant analysis with a robust kernel for face recognition and verifica- tion [ J]. Neural Networks and I,earnlng Systems, IEEE Transactions on, 2012,23 ( 3 ) : 526 - 534. 被引量:1
  • 2Zhou Z, Cinder S, Deprave F. A Classification Framework for Large- Scale Face Recognition Systems [ J ]. Advances in Biometrics, 2009, 5558:337 -346. 被引量:1
  • 3Heisele B, Pahoa, Poggio T. Face recognition with support vector ma- chine : Global versus component-based approach [ J ]. ICCV, 2001,12 (5) :625 -630. 被引量:1
  • 4He R, Hu B G,Yuan X T. Robust discriminant analysis based on non- parametric maximum entropy [ J ]. Advances in Machine learning, 2009,54(3) :120 - 134. 被引量:1
  • 5Zhou Z,Wagner A, Mohali H, et al. Face recognition with contiguous occlusion using Markova random fields [ C ]//Computer Vision, 2009 IEEE 12th International Conference on. IEEE,2009:1050 - 1057. 被引量:1
  • 6S H .lip, Y Xu, L Cairn. Bayesian compressive sensing [ J ]. IEEE SP, 2008,56(6) :2346-2356. 被引量:1
  • 7Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation [ J ]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2009,31 (2) :210-227. 被引量:1
  • 8Thong L W, Kwok J T. Efficient sparse modeling with automatic feature grouping [J]. Neural Networks and Learning Systems, IEEE Transac- tions on ,2012,23 (9) : 1436 - 1447. 被引量:1
  • 9He R, Shang W S, Hu B G, et al. Two-Stage Nonnegative Sparse Repre- sentation for Large-Scale Face Recognition [ J]. IEEE Transactions on Neural Network and Learning System ,2013,24( 1 ) :35 -46. 被引量:1
  • 10Guan N, Tao D, Luo Z, et al. Online nonnegative matrix factorization with robust stochastic approximation [ J ]. Neural Networks and Learn- ing Systems, [EEE Transactions on,2012,23 ( 7 ) : 1087 - 1099. 被引量:1

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部