期刊文献+

服务员强制休假的M/G/1排队模型的适定性 被引量:7

Well-Posedness of the M/G/1 Queueing Model with Compulsory Server Vacations
原文传递
导出
摘要 运用Hille-Yosida定理,Phillips定理与Fattorini定理证明服务员强制休假的M/G/1排队模型存在唯一的概率瞬态解. By using the Hille-Yosida theorem, Phillips theorem and Fattorini theorem we prove that the M/G/1 queueing model with compulsory server vacations has a unique positive time-dependent solution which satisfies probability condition.
出处 《数学的实践与认识》 CSCD 北大核心 2010年第5期139-148,共10页 Mathematics in Practice and Theory
基金 国家自然科学基金(10861011)
关键词 服务员强制休假的M/G/1排队系统 C0-半群 Dispersive算子 保守算子 等距算子 the M/G/1 queueing model with compulsory server vacations C0-semigroup dispersive operator, conservative operator isometric operator
  • 相关文献

参考文献8

  • 1Doshi B T. Queueing systems with vacation-a survey[J]. Queueing Systems, 1986, 1: 29-66. 被引量:1
  • 2Hideaki Takagi. Time-dependent analysis of M/G/1 vacation models with exhaustive service[J]. Queueing Systems, 1990, 6: 369-390. 被引量:1
  • 3Geni Gupur. Semigroup method for M/G/1 queueing system with exceptional scrvice time lot the first customer in each busy period[J]. Indian Journal of Mathematics, 2002, 44: 125-146. 被引量:1
  • 4Geni Gupur. Asymptotic property of the solution of M/M/1 queueing model with exceptional service time for the first customer in each busy period[J] .International Journal of Differential Equations and Applications, 2003, 8: 23-94. 被引量:1
  • 5张明勤,艾尼.吾甫尔.每个忙期中第一个顾客被拒绝服务的M/M/1排队模型的另一个特征值[J].应用泛函分析学报,2009,11(1):62-68. 被引量:4
  • 6Madan K C. An M/G/1 queueing system with compulsory server vacations[J]. Trabajos de Investigacion Operativa, 1992, 7(1): 105-115. 被引量:1
  • 7Adams R. Sobolev Spaces[M]. New York: Academic Press, 1975. 被引量:1
  • 8Geni Gupur, Xue-zhi Li, Guang-tian Zhu. Functional Analysis Method in Queueing Theory[M]. Research Information Ltd, Hertfordshire, 2001. 被引量:1

二级参考文献4

  • 1Takagi H. Time-dependent analysis of M/G/1 vacation models with exhaustive service [J]. Queueing Systems, 1990,6 : 369-390. 被引量:1
  • 2Geni Gupur. Semigroup method for M/G/1 queueing system with exceptional service time for the first customer in each busy period[J]. Indian Journal of Mathematics,2002,44(2):125-146. 被引量:1
  • 3Geni Gupur. Asymptotic property of the solution of M/M/1 queueing system with exceptional service time for the first customer in each busy period [J]. International Journal of Differential Equations and Applications, 2003,8 : 23-94. 被引量:1
  • 4Geni Gupur, Li Xuezhi, Zhu Guangtian. Functional Analysis Method in Queueing Theory [M]. Hertfordshire, Research Information Ltd, 2001. 被引量:1

共引文献3

同被引文献28

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部