期刊文献+

基于模糊聚类的风速短期组合预测 被引量:5

Short Term Combined Prediction of Wind Speed Based on Fuzzy Clustering
原文传递
导出
摘要 介绍了基于模糊聚类的风速短期组合预测方法。以模糊聚类技术进行训练样本的选择,可以大大提高训练样本的相似度。在时间序列模型、多元线性回归模型、灰色模型、神经网络模型基础上,根据风电场的风速(及气象)特性优化组合模型权重,得到适合本风电场的组合预测模型,应用实例表明该方法具有广泛的自适应性,应用范围更广,效果更佳。 The method of short term combined prediction of wind speed based on fuzzy clustering was presented.The prediction samples set were classified through fuzzy clustering analysis,which greatly improved the similarity of prediction samples.Based on the time-series models,multiple linear regression model,gray model,neural network model,the model weight of combined prediction was optimized according to wind speed characteristics of the wind electric field,and a suitable combined prediction model was obtained.Application examples show that this method has a wide range of self-adaptability,a broader range of applications and better prediction results.
出处 《华东电力》 北大核心 2010年第2期295-299,共5页 East China Electric Power
基金 国家科技部863项目(2007AA05Z458)
关键词 模糊聚类 样本选择 组合预测 自适应性 fuzzy clustering sample selection combination Forecast self-adaptability
  • 相关文献

参考文献20

  • 1Ma Lei, Luan Shiyan, Jiang Chuanwen. A review on the forecasting of wind speed and generated power[ J ]. Renewable and Sustainable Energy Reviews, 2009,13 (4) : 915-920. 被引量:1
  • 2M Alexiadis,P Dokopoulos, H Sahsamanogloul, et al. Shortterm forecasting of wind speed and related electrical power [ J ]. Solar Energy, 1998,63 ( 1 ) :61-68. 被引量:1
  • 3E A Bossanyi. Short-term wind prediction using Kalman filters [J].Wind Engineering. 1985,9 ( 1 ) : 1-8. 被引量:1
  • 4丁明,张立军,吴义纯.基于时间序列分析的风电场风速预测模型[J].电力自动化设备,2005,25(8):32-34. 被引量:184
  • 5肖永山,王维庆,霍晓萍.基于神经网络的风电场风速时间序列预测研究[J].节能技术,2007,25(2):106-108. 被引量:68
  • 6邵璠,孙育河,梁岚珍.基于时间序列法的风电场风速预测研究[J].华东电力,2008,36(7):26-29. 被引量:20
  • 7M C Alexiadis, P S Dokopoulos, H S Sahsamanoglou. Wind Speed and Power Forecasting based on Spatial Correlation Models[ J]. IEEE Transactions on Energy Conversion, 1999, 14(3) :836-842. 被引量:1
  • 8G N Kariniotakis, G S Stavrakakis, E F Nogaret. Wind power forecasting using advanced neural network models [ J ]. IEEE Transactions on Energy Conversion, 1996,11 (4) :762- 767. 被引量:1
  • 9M A Mohandes, S Rehman, T O Halawani. A neural networks approach for wind speed prediction. Renewable Energy , 1998 ; 13 ( 3 ) : 345-354. 被引量:1
  • 10Beyer H G, Degner T, Hausmann J, et al. Short-term prediction of wind speed and power output of a wind turbine with neural networks. European Wind Energy Association Conference and Exhibition, 1994. 被引量:1

二级参考文献47

共引文献307

同被引文献62

引证文献5

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部