期刊文献+

Newton-Leipnik系统的多种吸引子及其形成机制 被引量:1

Multiple attractors of Newton-Leipnik chaotic system and its conformation principle
下载PDF
导出
摘要 研究了Newton-Leipnik混沌系统的各种动力学行为,从中发现了新的双体双核混沌吸引子,发现了混沌吸引子与小周期吸引子、大周期吸引子并存于同一相空间的各种情况,发现了趋于周期吸引子的暂态混沌运动。这些特性是由五个平衡点的属性所确定的。每个平衡点邻域的状态轨线沿某方向发散而沿某方向收敛,这导致了系统复杂的动力学行为发生。 All dynamic behavior of Newton-Leipnik chaotic system is researched in this paper.New two-body-two-core chaotic attractors are found from this system.Several chaotic attractors and several periodic attractors may concur in same phase space. These characteristics depend on the attribute of five equilibria of this system.The state trajectory of system near each equilibria is constringency along some direction,or is emanative along another direction.These characteristics result in complicated dynamic behavior of the system.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第10期17-19,32,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.60872159~~
关键词 混沌 混沌吸引子 混沌机理 Newton—Leipnik系统 chaos chaotic attractor mechanism of chaos Newton-Leipnik system
  • 相关文献

参考文献14

  • 1Leipnik R B,Newton T A.Double strange attractors in rigid body motion with linear feedback control[J].Phys Lett A, 1981,86:63-67. 被引量:1
  • 2Marlin B A.Periodic orbits in the Newton-Leipnik system[J].Int J Bifurc Chaos,2002,12: 511-523. 被引量:1
  • 3Chen S,Zhang Q,Xie J,et al.A stable-manifold-based method for chaos control and synchronization[J].Chaos,Solitons & Fractals,2004, 20: 654-947:. 被引量:1
  • 4Richter H.Controlling chaotic system with multiple strange attractors[J].Phys Lett A,2002,300:188. 被引量:1
  • 5Wang X,Tian L.Bifurcation analysis and linear control of the Newton-Leipnik system[J].Chaos,Solitons & Fractals,2006,27:31-38. 被引量:1
  • 6Jia Q.Chaos control and synchronization of the Newton Leipnik chaotic system[J].Chaos,Solitons & Fractals,2008,35:814-824. 被引量:1
  • 7Sheu L J,Chen H K.Chaos in the Newton-Leipnik system with fractional order[J].Chaos,Solitons & Fractals,2008,36:98-103. 被引量:1
  • 8Chert H K,Lee C I.Anti-control of chaos in rigid body motion[J]. Chaos,Solitons & Fractals,2004,21:957-965. 被引量:1
  • 9周凤岐,孔令云.欧拉动力学方程中的新混沌吸引子及其分析[J].宇航学报,2007,28(6):1515-1519. 被引量:13
  • 10孔令云,周凤岐.用三轴气浮台进行混沌控制与反控制研究[J].宇航学报,2007,28(1):99-102. 被引量:10

二级参考文献50

  • 1黄琳,荆武兴.关于剩磁对卫星姿态确定与控制影响的研究[J].航空学报,2006,27(3):390-394. 被引量:12
  • 2孔令云,周凤岐.用三轴气浮台进行混沌控制与反控制研究[J].宇航学报,2007,28(1):99-102. 被引量:10
  • 3Liao The Lu.Adaptive synchronization of two Lorenz systems[J],Chaos, Solitions & Fractals, 1998 ;9 : 1555-1561. 被引量:1
  • 4Lian Kuang Yow.Adaptive synchronization design for chaotic systems via a scalar de\riving signal[J].IEEE Trans on Circuits Syst Ⅰ:Fundament theory and applications, 2002 ;49 : 17-27. 被引量:1
  • 5Mascolo S,Grass G.Controlling chaotic dynamics using backstepping design with application to the Lorenz system and Chua's circuit[J]. Int J Bifur Chaos,1999;9:1425-1429. 被引量:1
  • 6Bai E W,Lonngren K E.Synchronization and control chaotic system using active control[J].Solitons & Fractals,2000;11:39-47. 被引量:1
  • 7Ho M C,Hung Yao-Chen.Synchronization of two different systems by using generalized active control[J].Phys Left,2002 ; 301:424-432. 被引量:1
  • 8Konishi K,Hirai M,Kokame H.Sliding mode control for a class of chaotic systems[J].Phys Lett A,1998;245:511-518. 被引量:1
  • 9Pecora L M,Caroll T L.Synchronization in chaotic system[J].Phys Rev Lett, 1990;64:821-825. 被引量:1
  • 10Ott E,Grebogi C,Yorke J A.Controlling chaos[J].Phys Rev Lett, 1990;64:1196-1205. 被引量:1

共引文献28

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部