期刊文献+

基于曲面特性的图像非线性扩散滤波 被引量:1

Surface Properties Based Image Nonlinear Diffusion Filter
下载PDF
导出
摘要 利用扩散滤波进行图像降噪的过程中,一个核心问题是,如何控制扩散系数,使得模型在图像信息位置停止扩散,而在噪声处有效地扩散。为了更好地解决此问题,本文采用了一种新的思想,把图像看作是三维空间的一个曲面,这样可以得到图像曲面的两个基本特性:高斯曲率和平均曲率。为了能够在图像进行扩散滤波处理中有效地利用图像在三维空间中的这些曲面特性,文章分析了已有的基于平均曲率或高斯曲率的非线性扩散滤波模型,总结了平均曲率和高斯曲率的特点,并在此基础上,提出了基于混合曲率的扩散滤波模型;该模型作为一种新的基于曲面特性的图像扩散滤波模型,同时利用了图像的高斯曲率和平均曲率,恰当地融合了两种曲率的特点,能够以相对较快的速度滤除噪声,同时保持图像的细节特征。 The key difficulty in image denoising using diffusion filter is how to control the diffusion function in different location where the ratio of image information and noise. Aiming to this difficult, this article uses a new idea in which by regarding the intensity images as two-dimensional surface in a three-dimensional space, one can get the two base properties of image surface in the three-dimensional space : gauss curvature and mean curvature. Nonlinear diffusion filter using surface properties for noise removal is a new type of noise removal filter. This paper proposes a blend curvature driven diffusion model which synthesizes image surface' s Gauss curvature and means curvature information. The main advantage of this model is that it preserves important image structures and has a suitable diffusion speed.
出处 《信号处理》 CSCD 北大核心 2010年第3期375-380,共6页 Journal of Signal Processing
基金 国防预研基金资助项目(9140A010107KG01)
关键词 高斯曲率 平均曲率 扩散滤波 偏微分方程 曲面特性 Gauss curvature mean curvature diffusion filter partial differential equation surface property.
  • 相关文献

参考文献12

  • 1Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1990,12 (7) : 629 - 639. 被引量:1
  • 2Catte F, Lions P L, Morel J M, et al. Image selective smoothing and edge-detection by nonlinear diffusion. Siam Journal on Numerical Analysis, 1992,29 ( 1 ) : 182 - 193. 被引量:1
  • 3Alvarez L, Lions P L, Morel J M. Image selective smoot- hing and edge-detection by nonlinear diffusion. II. Siam Journal on Numerical Analysis, 1992,29 (3) : 845 -866. 被引量:1
  • 4Weickert J, Romeny B M T H, Viergever M A. Efficient and reliable schemes for nonlinear diffusion filtering. Image Processing, IEEE Transactions on, 1998, 7 ( 3 ) : 398-410. 被引量:1
  • 5Barcelos C A Z, Boaventura M, Silva E C. A well-bal- anced flow equation for noise removal and edge detection. Image Processing, IEEE Transactions on, 2003,12 (7) : 751-763. 被引量:1
  • 6Suk-Ho L, Jin Keun S. Noise removal with Gauss curvature-driven diffusion. Image Processing, IEEE Transactions on, 2005,14(7) :904-909. 被引量:1
  • 7El-Fallah A I, Ford G E. Mean curvature evolution and surface area scaling in image filtering. Image Processing, IEEE Transactions on, 1997,6(5) :750-753. 被引量:1
  • 8Aubert G, Kornprobst. P. Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, Belin: Springer, 2002. 被引量:1
  • 9Yezzi A. Modified curvature motion for image smoothing and enhancement. IEEE Trans Image Process, 1998,7 (3) : 345-352. 被引量:1
  • 10Mrazek P, Weickert J, Steidl G. Correspondences between wavelet shrinkage and nonlinear diffusion, in Proceedings of Scale-Space 2003, Belin: Springer, 2003,101-116. 被引量:1

同被引文献13

  • 1朱立新,王平安,夏德深.引入耦合梯度保真项的非线性扩散图像去噪方法[J].计算机研究与发展,2007,44(8):1390-1398. 被引量:13
  • 2Perona P, M alik J. Scale space and edge detection using anisotropic diffusion[ J]. IEEE Trans on Pattern Analysis and Machines Intelligence, 1990, 12(7) : 629-639. 被引量:1
  • 3You Y L, Kaveh M. Fourth-order partial differential equa- tions for noise removal[ J I. IEEE Trans on Image Process- ing, 2000, 9(10):1723-1730. 被引量:1
  • 4Gilboa G, Sochen N, Zeevi Y Y. Image enhancement and denoising by complex diffusion processes[ J]. IEEE Trans on Pattern An',dysis and Machines Intelligence, 2004, 26 (8) : 1020-1036. 被引量:1
  • 5Lee S H, Seo J K. Noise removal with Gauss curvature driven diffusion [ J ]. IEEE Trans on Image Processing, 2005, 14(7) :904-909. 被引量:1
  • 6Kostadin D, Alessandro F, Karen E. Image denoising by sparse 3D transform-domain collaborative filtering [ J ]. IEEE Transactions on Image Processing, 2007, 16 ( 8 ) : 1-16. 被引量:1
  • 7Hossein T, Peyman M. Global image denoising[ J]. IEEE Transactions on Image Processing, 2014, 23 (2) :755-768. 被引量:1
  • 8Weickert J. Application of nonlinear diffusion in image processing and computer vision [ J]. Acta Math. Univ. Comenianae, 2001 , LXX( 1 ) :33-50. 被引量:1
  • 9孙晓丽,冯象初,宋国乡.一种改进的方向扩散方程滤波方法[J].信号处理,2008,24(5):828-830. 被引量:4
  • 10刘国金,曾孝平,田逢春,成可立,韩亮.基于非下采样Contourlet变换和谱图理论的扩散去噪[J].仪器仪表学报,2009,30(10):2099-2104. 被引量:7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部