期刊文献+

不均匀变形对空洞长大影响的有限元分析 被引量:1

FEM analysis of the effects of heterogeneous deformation on void growth
原文传递
导出
摘要 为了分析FCC晶体中不均匀变形对空洞长大的影响,运用率相关晶体有限元,采用一个3D模型研究了FCC晶体中空洞的长大行为,对比分析了单晶和晶界上球形空洞长大的情况.模拟结果表明:晶界上的等效塑性应变大于单晶中的等效应变,晶界上空洞的长大速度大于单晶中空洞的长大速度,表明空洞易沿着晶界长大;随着晶粒间力学性能差异的增加,晶粒间不均匀变形更加明显,空洞越易沿着晶界长大. To investigate the effects of heterogeneous deformation on void growth in FCC crystals, a 3D model was used to study the growth behavior of voids in FCC crystals with the rate dependent crystal plasticity finite element method, and the growth behaviors of voids in single crystals and voids at grain boundary were compared. Simulation results show that the equivalent plastic deformation along the grain boundary is larger than that in single crystals, and the growth rate of voids at the grain boundary of the two-grain is faster than that in single crystal , which means the void is easy to grow along the grain boundary. With the mechanical properties' difference between the two grains increasing, the hetergeneous deformation between grains becomes more obvious, and the void is easier to grow along the grain boundary.
出处 《湖南科技大学学报(自然科学版)》 CAS 北大核心 2010年第1期30-33,共4页 Journal of Hunan University of Science And Technology:Natural Science Edition
基金 国家自然科学基金(50905188) 湖南省教育厅项目(09C383) 湖南科技大学博士科研启动基金
关键词 空洞 长大 晶体塑性 有限元 void growth crystal plasticity FEM
  • 相关文献

参考文献11

  • 1MeClintock F A. A criterion for ductile fracture by the growth of holes[J]. J Apple Mech, 1968, 35 : 363-371. 被引量:1
  • 2Rice J R, Tracy D M. On the ductile enlargement of voids in triaxial stress fields[J]. J Mech Phvs Solids, 1969, 17: 201-217. 被引量:1
  • 3Gurson A L. Continuum theory of ductile rupture by void nucleation and growth. Part Ⅰ-Yield Criteria and Flow Rules for Porous Ductile Media [J]. J Eng Mat Tech, 2977, 99( 1 ) : 2-15. 被引量:1
  • 4Tvergaarcl V. Influence of voids on shear band instabilities under plane strain condition[J]. International Journal of Fracture Mechanics, 1981,17: 389-407. 被引量:1
  • 5Needleman A. A continuum model for void nucleation by inclusion debonding[J]. J Appl Mech 1987, 54: 525-531. 被引量:1
  • 6Shu J Y. Scale dependent deformation of porous single crystals [J]. International Journal of Plasticity, 1998, 14( 10-11 ) : 1085-1107. 被引量:1
  • 7Orsini V C, Zikry M A. Void growth and interaction in crystalline materials[J]. Int J Phsticity, 2001, 17(10) : 1393-1417. 被引量:1
  • 8O' Regan T L, Quinn D F, Howe M A, McHugh P E. Void growth simulations in single crystals[J]. Comput Mech, 1997, 20: 115-121. 被引量:1
  • 9Potirniche G P, Heamdon J L, Horstemeyer M F, et al. Lattice orientation effects on void growth and coalescence in fcc single crystals [J]. Int J Plasticity, 2006, 22(5) : 921-942. 被引量:1
  • 10Liu W H, Zhang X M, Tang J G, et al. Simulation of void growth and coalescence behavior with 3D crystal plasticity theory[J]. Comput Mater Sci, 2007, 40(1):130-139. 被引量:1

同被引文献24

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部