期刊文献+

自适应分层采样辅助粒子滤波在视频跟踪中的应用研究 被引量:5

Adaptive Layered-sampling Auxiliary Particle Filter′s Research and Application in Video Tracking
下载PDF
导出
摘要 以视频目标跟踪中粒子滤波的粒子采样优化设计为研究内容,提出一种自适应分层采样辅助粒子滤波算法,以实现保证跟踪准确度和兼顾跟踪鲁棒性的要求.以Bhattacharyya系数为参量设计了粒子数调节函数,能够根据跟踪质量在粒子集中自适应分配用于保证准确度的粒子数和维持鲁棒性的粒子数.以最小二乘法对目标运动的预测点作为产生新粒子集的均值偏移操作起点,使新粒子集更准确的描述目标似然分布并提高算法效率.不同场景下的跟踪实验表明,算法能很好的应用于遮挡和运动方向渐变等情况下的跟踪,处理时间满足实时性要求. For the particle′s sampling and optimization of particle filter in video object tracking,an adaptive layered-sampling auxiliary particle filter is proposed to realize the tracking precision and robustness′s requirement.A function which adjusts the particle amount is designed based on the Baattacharyya coefficient.According to the tracking quantity,it can allocate the particles keeping precision and the particles keeping robustness adaptively in the particle set.A predicted point of object-moving based on the LSM (least square method) algorithm is used to be the origin to do the meanshift operation.By this operation,the new particle set is made,it will be better to describe the object′s likelihood distribution and improve the algorithm efficiency.The tracking experiments under different enviroments demonstrate that this algorithm can achieve better tracking performance in presence of occlusion and object-moving in slow and variable direction,the consuming time is up to the requiment of real-time performance.
出处 《光子学报》 EI CAS CSCD 北大核心 2010年第3期571-576,共6页 Acta Photonica Sinica
关键词 视频跟踪 辅助粒子滤波 自适应分层采样 最小二乘法 均值偏移 Video tracking Auxiliary particle filter Adaptive-layered-sampling Least square method Meanshift
  • 相关文献

参考文献9

  • 1PITT M, SHEPHARD N. Filtering via simulation: auxiliary particle Iihers [ J ]. Journal of the American Statistical Association, 1999,94(446) : 590-599. 被引量:1
  • 2SHEN C H, VAN DEN ANTON H, BROOKS M J, et al. Enhanced importance sampling: unscented auxiliary particle filtering for visual tracking [ C]. Proceedings of Australian Conference on Artificial Intelligence, Cairns, Australia, 2004, 3339: 180 -191. 被引量:1
  • 3CHANG C, ANSARI R. Kernel particle filter for visual tracking [J]. IEEE Signal Processing Letters, 2005,12 (3): 242 -245. 被引量:1
  • 4COMANICIU D, RAMES V, MEER P. Kernel-based object tracking[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2003,25(5) :564-577. 被引量:1
  • 5SHAN Cai feng,TAN Tie-niu,WEI Yu-cheng. Real-time hand tracking using a meanshift embedded particle filter[J]. Pattern Recognition,2007,40(7) :1958 -1970. 被引量:1
  • 6ZHANG Bo, TIAN Wei-feng, JIN Zhi-hua. Head tracking based on the integration of two different particle filters[J]. Measurement Science and Technology, 2006, 17 ( 11 ) : 2877- 2883. 被引量:1
  • 7NAIT-CHARIF H,MCKENNA S J. Tracking poorly modeled motion using particle filters with iterated likelihood weighting [C]. Proceedings of Asian Conference on Computer Vision, Korea,2004,4(1) :156 161. 被引量:1
  • 8张波..基于粒子滤波的图像跟踪算法研究[D].上海交通大学,2007:
  • 9刘洋,李玉山,张大朴,邱家涛.基于动态目标建模的粒子滤波视觉跟踪算法[J].光子学报,2008,37(2):375-380. 被引量:11

二级参考文献11

  • 1辛云宏,杨万海.IRST系统的单站机动目标跟踪算法研究[J].光子学报,2004,33(9):1131-1135. 被引量:8
  • 2COMANICIU D, RAMESH V, MEER P. Kernel based object tracking[J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25(5) :564 -577. 被引量:1
  • 3COLLINS R T, LIU Yan xi, LEORDEANU M. Online selection of discriminative tracking features[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27 (10): 1631- 1643. 被引量:1
  • 4YANG Chang jiang, DURAISWAMI R, DAVIS L. Fast multiple object tracking via a hierarchical particle filter[C]. The lOth IEEE International Conference on Computer Vision, Washington DC, USA: IEEE Computer Society, 2005,1:212- 219. 被引量:1
  • 5XIONG Tao, DEBRUNNER C. Monte carlo visual tracking using color histograms and a spatially weighted oriented hausdorff measure[C], International Conference on Computer Analysis of Images and Pattens, Berlin Heidelberg;Springer, 2003:190- 197. 被引量:1
  • 6OKUMA K,TALEGHANI A,FREITAS N D,et al. A boosted particle filter: Muhitarget detection and tracking [C]. In European Conference on Computer Vision, Prague: Springer, 2004,1:28 -39. 被引量:1
  • 7LIU Feng, LIU Qing shan, LU Han-qing. Robust color based tracking[C]. The Proc of the 3th In-ternational Conference on Image and Graphics, Hong Kong:IEEE,2004:132 -135. 被引量:1
  • 8ISARD M, BLAKE A. Condensation conditional density propagation for visual tracking [J]. Journal of Computer Vision, 1998.28(1) : 5-28. 被引量:1
  • 9FREEMAN W T, ADELSON E H. The design and use of steerable filters [J]. IEEE Trans on Patterer Analysis and Machine Intelligence ,1991,13(9) :891- 906. 被引量:1
  • 10SHEN J, CASTAN S. ZHAO Jian. New edge detection methods based on exponential filter[C]. The Pioc oj tile 10th Conference on Pattern Recognition, New Jersey: IEEI'2, 1990. 1:709-711. 被引量:1

共引文献10

同被引文献71

  • 1程建,周越,蔡念,杨杰.基于粒子滤波的红外目标跟踪[J].红外与毫米波学报,2006,25(2):113-117. 被引量:73
  • 2邹国辉,敬忠良,胡洪涛.基于优化组合重采样的粒子滤波算法[J].上海交通大学学报,2006,40(7):1135-1139. 被引量:43
  • 3李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 4COMANICIU D,RAMESH V,MEER P.Real-time tracking of non-rigid objects using Mean-Shift[C].Proceedings of International Conference on Computer Vision and Pattern Recognition,2000(2):142-149. 被引量:1
  • 5WU B,NEVATIA R.Detection and tracking of multiple,partially occluded humans by bayesian combination of edgelet based part detectors[J].International Journal of Computer Vision,2007,75(2):247-266. 被引量:1
  • 6OKUMA K,TALEGHANI A,DEFREITAS N,et al.A boosted particle filter:Multitarget detection and tracking[C].Proceedings of 8th European Conference on Computer Vision,2004,1:28-39. 被引量:1
  • 7YANG C,DURAISWAMI R,DAVIS L.Fast multiple object tracking via a hierarchical particle filter[C].Proceedings of 10th IEEE International Conference on Computer Vision,2005(1):212-219. 被引量:1
  • 8WU Y,WANG J Q,LU H Q.Robust Bayesian tracking on Riemannian manifolds via fragments-based representation[C].Proceedings of ICASSP,2009,1:765-768. 被引量:1
  • 9CHAI Y J,SHIN S H,CHANG K,et al.Real-time user interface using particle filter with integral histogram[J].IEEE Transactions on Consumer Electronics,2010,56(2):510-515. 被引量:1
  • 10QIU J T,LI Y S,CHU X Q.Efficient head tracking using an integral histogram constructing based on sparse matrix technology[C].Proceedings of ACCV 2010 Workshops,2010,LNCS6468(Part Ⅰ):256-265. 被引量:1

引证文献5

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部