摘要
将主动-被动同步法运用于离散混沌系统,对混沌同步问题进行了研究.根据Lyapunov稳定性理论,对系统进行一般分解,实现了离散系统的混沌同步,以Bragg声光双稳系统为例,验证了这种方法的有效性.仿真模拟结果表明,控制后的两个初始条件不同的Bragg声光双稳系统误差变量很快平稳地趋于零,说明这种同步方法是快速有效的.这种方法可以应用到任意的两个初始条件不同的离散和连续混沌系统,具有一定的普适性.
An active-passive method is used in discrete chaotic systems to study chaos synchronization.A discrete system is generally divided based on Lyapunov stability theory,and synchronization of discrete chaotic systems is realized.Bragg acousto–optic bistable system is taken as an example to verify the effectiveness of the method.Simulation results show that the error variable of two Bragg acousto–optic bistable systems with different initials approach zero smoothly and rapidly in a short series of time,which shows the method is effective and practical.The method is proper to any discrete or continuous chaotic systems with different initials,and it can be generally used.
出处
《光子学报》
EI
CAS
CSCD
北大核心
2010年第3期409-411,共3页
Acta Photonica Sinica
基金
辽宁省自然科学基金(20052151)资助