期刊文献+

一类新的含双幂非线性项的Schrdinger方程的差分格式 被引量:6

Difference Schemes for a New Kind of Schrdinger Equation with Double Nonlinear Terms
下载PDF
导出
摘要 利用离散方法讨论了带有2个幂次非线性项的Schrdinger方程的4个差分格式,得出了保持电荷守恒和隐式能量守恒以及这些格式的截断误差.最后,通过数值例子验证了算法的有效性. Four finite difference schemes are discussed by discrete methods for a kind of Schrodinger equation with two power-law nonlinear terms. The schemes preserve charge and implicit energy conservation laws exactly. And their numerical errors are estimated. Lastly, numerical tests show that the constructed schemes are efficient.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2010年第1期22-26,共5页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(10901074) 江西省自然科学基金(2008GQS0054) 江西省教育厅基金(GJJ09147) 江西师范大学博士启动基金(2057) 江西师范大学青年成长基金(2390) 江西师范大学研究生创新基金(JXSD-Y-09046)资助项目
关键词 差分格式 非线性Schrdinger方程 守恒律 difference scheme nonlinear Schrodinger equation conservation law
  • 相关文献

参考文献9

  • 1Zhao D, Luo H G, Wang S J, et al. A direct truncation method for finding abundant exact solutions and application to the one-dimensional higher-order Schrodinger equation [ J]. Chao, Solitons and Fractals, 2005,24(2) : 533-547. 被引量:1
  • 2Chang Q S,Jia E H,Sun W. Difference schemes for solving the generalized nonlinear Sch_rfidinger equation [J]. J Comput Phys, 1999, 148(2) :397-415. 被引量:1
  • 3Hong J L, Liu Y, Munthe-Kaas Hans, et al. Globally conservative properties and error estimation of a multisymplectic scheme for Schr6dinger equations with variable coefficients [J]. Appl Numer Math,2006,56(6) :814-843. 被引量:1
  • 4Kong L H, Hong J L, Wang L, et al. Symplectic integrator for nonlinear high order Schrfidinger equation with a trapped term [ J]. J Comput Appl Math,2009,231(2) :664-679. 被引量:1
  • 5Kong L H, Hong J L, Liu R X. Long-term numerical simulation of the interaction between a neutron field and a neutral meson field by a symplectic-preserving scheme [ J ]. J Phys A Math Theor, 2008,41 ( 25 ) : 1-19. 被引量:1
  • 6Fu F F, Kong L H,Wang L.Symplectic Euler method for nonlinear high order Schrtidinger equation with a trapped term [J] .Adv Appl Math Mech,2009,1(5) :699-710o. 被引量:1
  • 7王兰.多辛Preissman格式及其应用[J].江西师范大学学报(自然科学版),2009,33(1):42-46. 被引量:9
  • 8田巧娴,杨国锋,葛永斌.三维热传导方程恒稳定的高精度半显式差分方法[J].江西师范大学学报(自然科学版),2009,33(1):56-60. 被引量:7
  • 9Zhou Y L. Application of discrete functional analysis to the finite difference method [ M]. Hong Kong: International Academic Publishers, 1990. 被引量:1

二级参考文献20

  • 1黄浪扬.非线性Pochhammer-Chree方程的多辛格式[J].计算数学,2005,27(1):96-100. 被引量:5
  • 2马明书.解二维抛物型方程的高精度差分格式[J].应用数学和力学,1996,17(11):1013-1017. 被引量:7
  • 3葛永斌,田振夫,吴文权.高维热传导方程的高精度交替方向隐式方法[J].上海理工大学学报,2007,29(1):55-58. 被引量:12
  • 4Kang F. On difference schemes and symplectic geometry[ C ]. Beijiang: Proceeding of the 1984 Beijing Symposium on Differential Geometry and Differential Equations, Computation of Partial Differential Equations, Science Press, 1985. 被引量:1
  • 5冯康,秦孟兆.哈密尔顿系统的辛几何算法[M].杭州:浙江科学技术出版社,2002. 被引量:7
  • 6Bridges T J, Reich S. Multisymplectic structure and wave propagation[ J]. Math Proc Camb Phil Soc, 1997,121:147-193. 被引量:1
  • 7Reich S. Muhisymplectic Runge-Kutta collocation methods for Hamilton wave equation[J]. J Comput Phys,2000,157:473-499. 被引量:1
  • 8Bridges T J, Reich S. Numerical methods for Hamiltonian PDEs[J]. J Phys A: Math Gen, 2006,39: 5287-5320. 被引量:1
  • 9Hong J L, Liu Y, Munthe-Kaas H, et al. Globally conservative properties and error estimation of a muhisymplecfic scheme for Schrodinger equations with variable coefficients[ J]. Appl Numer Math, 2006,56:814-843. 被引量:1
  • 10Hong J L, Li C. Muhisymplectic Runge-Kutta methods for nonlinear Dirac equations[ J]. J Comput Phys, 2006,211 : 448-472. 被引量:1

共引文献13

同被引文献42

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部