期刊文献+

作为流域山坡单元离散控制参数的河网阈值 被引量:2

Drainage area threshold as a parameter for controlling spatial hillslope discretization in basins
原文传递
导出
摘要 对于基于山坡单元的GBHM模型,河网阈值的选取决定了模型模拟时的流域离散精度。该文以流域地形地貌分析为基础,提出了一种基于多重分形的河网阈值联合优选SD-MF法,该法首先根据传统方法确定河网阈值的选取范围,然后利用多重分形选取阈值范围内的相对最优值。SD-MF法在密云水库以上潮河流域及白河流域的应用结果表明:2个流域恰当的河网阈值均为0.675 km2,为流域GBHM模型的构建奠定了基础。 The drainage area threshold controls the resolution of the basin discretization when the hillslope-based GBHM (geomorphology-based hydrological model) model is used for hydrological simulations. This paper describes a multi-fractal method based on analyses of the river slope and the drainage density developed from analyses of the geomorphologieal properties of various basins. In this method, the drainage area threshold is first determined by traditional methods, then the relative optimal scope is determined using the multi-fractal method. The results applied to the Chao and Bai River basins of the upper Miyun Reservoir show that appropriate drainage area thresholds for both basins are 0. 675 km^2 for use in the watershed GBHM model.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第3期380-382,共3页 Journal of Tsinghua University(Science and Technology)
基金 “十一五”国家科技支撑计划项目(2006BAB14B01) 国际科技合作计划项目(2007DFA70610)
关键词 河网阈值 流域离散 宽度方程 多重分形 GBHM(geomorphology-based HYDROLOGICAL model)模型 drainage area threshold basin discretizaiton width function multi fractal GBHM (geomorphology-based hydrological model)
  • 相关文献

参考文献6

  • 1Bingner R L, Garbrecht J, Arnold J G, et al. Effects of watershed subdivision on simulation runoff and fine sediment yield[J].Trans ASAE, 1997, 40(5): 1329 - 1335. 被引量:1
  • 2Refsgaard J C. Parameterisation, calibration and validation of distributed hydrological models [J]. J Hydrology, 1997, 198: 69-97. 被引量:1
  • 3熊立华,郭生练.基于DEM的数字河网生成方法的探讨[J].长江科学院院报,2003,20(4):14-17. 被引量:56
  • 4孔凡哲,李莉莉.利用DEM提取河网时集水面积阈值的确定[J].水电能源科学,2005,23(4):65-67. 被引量:99
  • 5Rinaldo A, Rodriguea-Iturbe I, Rigon R, et al. Self-organized fractal river netwoks[J].Physical Review Letters, 1993, 70: 822-825. 被引量:1
  • 6Yang D, Herath S, Musiake K. Spatial resolution sensitivity of catchment geomorphologic properties and the effect on hydrological simulation[J]. Hydrological Processes, 2001, 15:2085 - 2099. 被引量:1

二级参考文献20

  • 1芮孝芳.利用地形地貌资料确定Nash模型参数的研究[J].水文,1999,18(3):6-10. 被引量:24
  • 2芮孝芳.地貌学与最优化原理相结合的途径在确定Nash模型参数中的应用[J].水利学报,1996,28(3):70-75. 被引量:9
  • 3MONTGOMERY D R, Dietrich W E. Channel initiation and the problem of landscape scale [ J ]. Science,1992, (255) : 826- 830. 被引量:1
  • 4O' CALLAGHAN J F, MARK D M. The exaction of drainage networks from digital elevation data[J]. Computer Vision, Graphics and Image Processing, 1984,(28) : 323- 344. 被引量:1
  • 5QUINN P, BEVEN K J, CHEVALLIER P, et al. The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models[J]. Hydrologi-cal Processes, 1991, (5) : 59 - 79. 被引量:1
  • 6QUINN P F, BEVEN K J, LAMB R. The In(α/tanβ)index: how to calculate it and how to use it within the TOPMODEL framework[A]. In: Beven K J (Editor).Distributed Hydrological Modelling: Application of the TOPMODEL Concept [C]. London: John Wiley & Sons Ltd., 1997, 31 - 52. 被引量:1
  • 7MCMASTER H J. Effects of digital elevation model resolution on derived stream network positions[J ]. Water Resources Research, 2002, 38(4) : 13 - 1/13 - 9. 被引量:1
  • 8FREEMAN T G. Calculating catchment area with divergent flow based on a regular grid[J]. Comput. Geosci.,1991, 17(3) : 413 - 422. 被引量:1
  • 9TARBOTON D. A new method for the determination of flow directions and upslope areas in grid digital elevation models[J]. Water Resources Research, 1997, (33):309-319. 被引量:1
  • 10GYASI-AGYEI Y, WILLGOOSE G R, DeTroch F P.Effects of vertical resolution and map scale of digital elevation models on geomorphologie parameters used in hydrology[J]. Hydrological Proeegses, 1995, (9): 363-382. 被引量:1

共引文献135

同被引文献19

引证文献2

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部