期刊文献+

粒子滤波的视频目标跟踪算法研究 被引量:1

A particle filtering algorithm for tracking moving objects in videos
下载PDF
导出
摘要 目标跟踪是计算机视觉和图像处理的一个重点课题,在视频监控、机器人视觉导航以及智能交通控制中具有广泛的应用前景.通过粒子滤波技术,研究了如何整合颜色特征、前景信息和积分图运算等技术实现视频目标跟踪的粒子滤波算法.在对目标进行分割中采用了混合高斯背景建模方法;同时结合积分直方图的计算方法对颜色特征进行分段统计及相互遮挡的判断,实现基于粒子滤波的目标跟踪算法的优化,解决跟踪中诸如遮挡、光照变化、背景干扰、尺寸变化等难以解决的问题.实验结果表明提出的方法达到了预期目标. Tracking moving objects across video sequences is a key subject in computer vision and image processing.It is required for fields as diverse as video surveillance,robotic vision,navigation,and intelligent traffic control.After studying particle filter technology,a moving object tracking algorithm based on a particle filter was developed,integrating foreground information,color features and an integral image method.Gaussian mixture models(GMM) were employed for object foreground segmentation.By using an integral histogram algorithm,data for the color features in different sections were derived.Based on the feature's integral histogram,occlusion could then be analyzed and judged.The method presented can resolve occlusion caused by objects appearing among obstacles or with other objects,and to some extent overcome problems caused by changes in illumination,background and apparent size.Experimental results when tracking moving objects agreed well with predicted results.
出处 《智能系统学报》 2009年第6期538-543,共6页 CAAI Transactions on Intelligent Systems
基金 高等学校博士学科点专项科研基金资助项目(20060497017) 湖北省自然科学基金资助项目(2009CDB403)
关键词 目标跟踪 粒子滤波 积分图 前景分割 视频 object tracking particle filter integral image foreground segmentation video
  • 相关文献

参考文献10

  • 1GORDON N. A hybrid bootstrap filter for target tracking in clutter[J]. IEEE Trans on AES, 1997, 33 ( 1 ) :353-358. 被引量:1
  • 2GORDON N, SALMOND D, SMITH A. Novel approach to nonlinear non-Gaussian Bayesian state estimation[ J]. IEEE Proceedings on Radar and Signal Processing, 1993, 140: 107-113. 被引量:1
  • 3GODSILL D S, ANDRIE C. On sequential Monte Carlo sampling methods for Bayesian fihering[ J]. Statistics and Computing ,2000, 10( 3 ) : 197-208. 被引量:1
  • 4XU Dongbin, HUANG Lei, LIU Changping. Object tracking using particle filter based on color correlogram[ C]//Second International Symposium on Intelligent Information Technology Application 2008, Shanghai,2008 : 477-480. 被引量:1
  • 5ZHUANG Yan, WANG Wei, XING Ruizhi. Target tracking in colored image sequence using weighted color histogram based particle filter[ C ]//IEEE International Conference on Robotics and Biomimetics 2006, Kunming, 17-20: 1488- 1493. 被引量:1
  • 6LOZA A, PATRICIO M A, GARCIA J, MOLINA J M. Advanced algorithms for real-time video tracking with multiple targets[ C]//lnternational Conference on Control, Automation, Robotics, and Vision. Hanoi, Vietnam, 2008, 17- 20: 125-131. 被引量:1
  • 7陆军,李凤玲,姜迈.摄像机运动下的动态目标检测与跟踪[J].哈尔滨工程大学学报,2008,29(8):831-835. 被引量:7
  • 8焦安霞,姜弢.视频序列中动目标快速跟踪新算法的研究[J].应用科技,2008,35(12):7-10. 被引量:2
  • 9邓文坛,张三同,余纯.一种改进的粒子滤波跟踪算法的研究[J].自动化技术与应用,2008,27(3):84-87. 被引量:6
  • 10王健,金永镐,董华春,权太范.进化粒子滤波算法在雷达目标跟踪中的应用[J].现代防御技术,2008,36(2):115-118. 被引量:3

二级参考文献27

  • 1汪颖进,张桂林.新的基于Kalman滤波的跟踪方法[J].红外与激光工程,2004,33(5):505-508. 被引量:13
  • 2胡洪涛,敬忠良,李安平,胡士强.非高斯条件下基于粒子滤波的目标跟踪[J].上海交通大学学报,2004,38(12):1996-1999. 被引量:54
  • 3莫以为,萧德云.进化粒子滤波算法及其应用[J].控制理论与应用,2005,22(2):269-272. 被引量:41
  • 4胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 5WELCH G, BISHOP G. An introduction to the Kalman filter[ EB/OL]. [ 2001 - 09 - 21 ]. http://info. acm. org/ pubs/toc/CRnotice. html. 被引量:1
  • 6JOVANDIC I, DUROVIC Z. Pose estimation of moving objects from video sequences based on the unscented transformation [ C ]// Proceedings of the 6th World Congress on Intelligent Control and Automation. [ s. l] ,2006 : 9277 - 9281. 被引量:1
  • 7[1]Gordon N J,Salmond D J.Novel Approach to Nonlinear and Non-Gaussian Bayesian State Estimation[J].Proc of Institute Electric Engineering,1993,140(2):107-113. 被引量:1
  • 8[4]Farina A,Ristic B,Benvenuti D.Tracking a Ballistic Target:Comparison of Several Nonlinear Filters[J].IEEE Trans,2002,38(3):854-867. 被引量:1
  • 9[6]Crisand,Doucet A.A Survey of Convergence Insults on Particle Filtering Methods for Practitioners[J].IEEE Trans on signal Processing,2002,50(3):736-746. 被引量:1
  • 10[7]Kitagawa G.Monto Carlo filter and smoother for nonGaussian nonlinear state space models[J].J of Computational and Graphical Statistics,1996,5(1):1-25. 被引量:1

共引文献13

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部