摘要
对于参数向量优化问题minK{f(ω,x)x∈G(ω)},其中f:W×X→Y是从赋范空间W和X的积到另一个赋范空间Y的Hadamard可微的单值映射,G:W→X是一个集值映射,K?Y是一个尖闭凸锥。应用集值映射的余切上图导数进行了灵敏度分析。
Consider the parametrized minimization problem minK {f(w,x)|x ∈G(w)},wheref:W×X → Y is a Hadamard-differentiable single-valued map from the product of two normed spaces W and X to another normed space Y,G:W → X is a feasible set-valued map,and K belong to Y is a convex closed pointed cone.We study sensitivity analysis by useing contingent epiderivative of set-valued map.
出处
《齐齐哈尔大学学报(自然科学版)》
2010年第2期82-85,共4页
Journal of Qiqihar University(Natural Science Edition)
基金
齐齐哈尔大学青年教师科研启动支持计划项目
关键词
参数多目标优化
余切上图导数
敏感分析
伪李普希兹性质
parametric multiobjective optimization
contingent epiderivative
sensitivity analysis
pseudo-Lipschitz property