期刊文献+

优化SVM在锅炉负荷预测中的应用 被引量:2

Optimal Support Vector Machine Model for Boiler Load Forecasting
下载PDF
导出
摘要 提出智能优化支持向量机算法来提高模型的预测能力和泛化能力。该算法针对支持向量机噪声敏感问题采用小波方法对数据集去噪;利用核主成分分析方法提取数据特征;采用量子粒子群算法优化支持向量机超参数。将该优化算法应用于锅炉负荷短期预测,实验结果表明,该优化算法预测精度较高,收敛速度较快,泛化性能优于其他预测方法,且工程实现容易。 Intelligently optimal support vector machine (SVM) were introduced in electric utility boiler to improve short-term load forecasting accuracy and generalization ability. Wavelet transform is adopted to filter noise in training and testing data set. Kernel principle component analysis is used in feature selection. Then quantum-behaved particle swarm algorithm is chosen to determinate optimal hyper-parameter in SVM. This optimal algorithm has been tested on power plant and the results show that the prediction can get higher precision and convergence speed.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2010年第2期316-320,共5页 Journal of University of Electronic Science and Technology of China
基金 贵州省自然科学基金(黔科合字20072004) 贵州省省长专项资金(黔省专合字(2007)14号)
关键词 预测 核主成分分析 优化 量子粒子群算法 支持向量机 forecasting kernel principle component analysis optimization quantum-behaved particle swarm algorithm support vector machines
  • 相关文献

参考文献3

二级参考文献22

  • 1[1]Scholkopf B, Smola A, Muller K. Nonlinear conponent analysis as a kernel eigenvalue problem.Neural Computation, 1998, 10(5): 1299-1319. 被引量:1
  • 2[2]Baudat G, Anouar F. Generalized discriminant analysis using a kernel approach. Neural Computation, 2000, 12(10): 2385-2404. 被引量:1
  • 3[3]Kim K I, Jung K, Kim H J. Face recognition using kernel principal component analysis. IEEE Signal Processing Letters, 2002, 9(2): 40-42. 被引量:1
  • 4[4]Moghaddam B. Principal manifolds and probabilistic subspaces for visual recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002, PAMI-24(6): 780-788. 被引量:1
  • 5[5]Yang MH. Kernel eigenfaces vs. kernel fisherfaces: face recognition using kernel methods. Proc.of 5th IEEE Int. Conf. on Autonatic Face and Gesture Recognition, Washington D. C., 2002:215-220. 被引量:1
  • 6[6]Vapnik V. The Nature of Statistical Learning Theory, New York, NY: Wiley, 1998, Chapter 5. 被引量:1
  • 7[7]Guo G, Li S Z, Chan K L. Support vector machine for face recognition. Image and Vision Computing, 2001, 19(9-10): 631-638. 被引量:1
  • 8[8]Mika S, Ratsch G, et al.. Fisher discriminant analysis with kernels. In Y. H. Hu, J. Larsen, E.Wilson, S. Douglas, ed., Neural Networks for Signal Processing, IEEE, 1999, IX: 41-48. 被引量:1
  • 9[9]Scholkopf B, Smola A, et al.. New support vector algorithms. Neural Computation, 2000, 12(5):1207-1245. 被引量:1
  • 10Kennedy J, Eberhart R C. Particle swarm optimization[C]. Proc. IEEE Int. Conf. on Neural Networks, Perth, WA,Australia, 1995. 1 942-1 948 被引量:1

共引文献122

同被引文献21

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部