期刊文献+

变温加热和神经网络方法检测混合气体

Identification of Mixed Gases by Periodic Heating and Neural Network
下载PDF
导出
摘要 研究了采用单只气敏元件通过变温加热和神经网络信息处理,对乙醇和醋酸混合气体的识别和浓度检测的方法。根据气敏元件的灵敏度随加热温度发生改变的特点,在气敏元件上施加锯齿波加热电压,测量了周期变温条件下25种不同浓度乙醇和醋酸混合气体的归一化电导—温度曲线。然后,采用由64个输入节点和2个输出节点组成的BP网络,以及Levenberg-Marquardt算法对测量数据进行处理。结果说明,该气体分析系统对乙醇和醋酸混合气体有较好的分类识别效果。 This paper researched the quantitative identification of individual gas concentrations (ethanol and acetic acid) in their gas mixtures using one gas sensor by periodic heating and neural network. The dependence of conduction of gas sensor on peri- odic heating temperature in 25 different concentrations of ethanol and acetic acid mixed gases was tested. In an artificial neural net- work ,64 inputs ,temperature changes of the sensors, and two outputs ,individual concentrations of the introduced gases were used. Levenberg-Marquardt training algorithm was performed as the training method of the neural network structure. The mixed gases tested curves were preprocessed, the results demonstrate that the proposed gas recognition systems are effective in identifying ethanol and acetic acid mixed gases.
作者 陈环 傅刚
出处 《仪表技术与传感器》 CSCD 北大核心 2010年第2期13-14,27,共3页 Instrument Technique and Sensor
关键词 气敏元件 周期变温 人工神经网络 混合气体 识别 gas sensor periodic heating neural network mixed gases identify
  • 相关文献

参考文献1

二级参考文献10

  • 1Gardner J W,Hines E L,Wilkinson M.Application of Artificial Neural Networks to an Electronic Olfactory System[J].Measurement Science and Technology,1990,1:446-451. 被引量:1
  • 2Hines E L,Llobet E,Gardner J W.Electronic Noses:a Review of Signal Processing Techniques[C]//IEE Proc.-Circuit Device Syst,1999,146(6):297-310. 被引量:1
  • 3Chang H J,Freeman W J.Parameter Optimization in Models of the Olfactory Neural System[J].Neural Networks,1996,9(1):1-14. 被引量:1
  • 4Chang H J,Freeman W J,Burke B C.Biologically Modeled Noise Stabilizing Neurodynamics for Pattern Recognition[J].International Journal of Bifurcation and Chaos,1998,8(2):321-345. 被引量:1
  • 5Kozma R,Freeman W J.Classification of EEG Patterns Using Nonlinear Dynamics and Identifying Chaotic Phase Transitions[J].Neurocomputing,2002,44-46:1107-1112. 被引量:1
  • 6Li X,Li G,Wang L,et al.A Study on a Bionic Pattern Classifier Based on Olfactory Neural System[J].International Journal of Bifurcation and Chaos,2006,16(8):2425-2434. 被引量:1
  • 7Freeman W J.Mass Action in the Nervous System[M].Academic Press,New York,1975. 被引量:1
  • 8Yao Y,Freeman W J.Model of Biological Pattern Recognition with Spatially Chaotic Dynamics[J].Neural Networks,1990,3:153-170. 被引量:1
  • 9Kozma R,Freeman W J.Chaotic Resonance --Methods and Applications for Robust Classification of Noise and Variable Patterns[J].International Journal of Bifurcation and Chaos,2001,11(6):1607-1629. 被引量:1
  • 10Fu J,Yang X L,Yang X L,et al.Application of Biologically Modeled Chaotic Neural Network to Pattern Recognition in Artificial Olfaction[C]//Proceeding of IEEE Engineering in Medicine and Biology 27th Annual Conference,2005,4666-4669. 被引量:1

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部