期刊文献+

基于Fisher距离的新型脑机接口分类器 被引量:1

A Novel FLD of BCI Based on SRM Principle
下载PDF
导出
摘要 提出基于F isher距离测度的线性分类器符合统计学习理论框架的观点,结合主分量分析和遗传算法提出一种基于结构风险最小化(Structural R isk M in im ization,简称SRM)归纳原则的分类器设计方法.通过对比遗传算法和穷举法的运算量,阐明所提出的特征提取方法在采用F isher线性分类器分类时的优势.最后采用所提出的基于SRM归纳原则的方法对一组人脑慢皮层电位数据进行了分类仿真实验,并将结果与该组数据竞赛优胜者的结果进行了对比,性能得到了明显提高. A Fisher Linear Discriminator coincident with statistical learning theory is presented. Based on principal component analysis, structural risk minimization (SRM) classifier and the genetic algorithms (GA) are proposed. It shows the advantage of the method for character extraction comparing with between GA and the general enumeration in operation. A simulation experiment is conducted for human brain slow cortical potential with the algorithm based on the SRM principle. The result shows that the new algorithm is prior to the winner of the data set in discriminator.
作者 张旭秀 陈坚
出处 《大连交通大学学报》 CAS 2010年第1期104-107,共4页 Journal of Dalian Jiaotong University
基金 国家自然科学基金资助项目(30570475 30170259 60172072) 中国博士后基金资助课题(20080441121)
关键词 统计学习理论 遗传算法 线性分类器 结构风险最小化 脑机接口 statistical learning principle genetic algorithms linear classifier structural risk minimization brain computer interface
  • 相关文献

参考文献10

  • 1Vapnik V N.统计学习理论的本质(第二版)[M].张学工,译.北京:清华大学出版社,2000.95-120. 被引量:2
  • 2VAPNIK V N.Statistical Learning Theory[M].New York:John Wiley & Sons.INC,1998. 被引量:1
  • 3VAPNIK V N.An Overview of Statistical Learning Theory[J].IEEE TRANSACTIONS ON NEURAL NETWORKS,1999(10):988-999. 被引量:1
  • 4杨帮华..自发脑电脑机接口技术及脑电信号识别方法研究[D].上海交通大学,2006:
  • 5程明..基于脑电信号的脑—计算机接口的研究[D].清华大学,2004:
  • 6官金安..脑—机接口及其信号的单次提取[D].华中科技大学,2005:
  • 7杨帮华,颜国正,鄢波.基于离散小波变换提取脑机接口中脑电特征[J].中国生物医学工程学报,2006,25(5):518-522. 被引量:20
  • 8綦宏志,程龙龙,陈滨津,赵翔,明东,万柏坤.想象动作中动态脑电的信息熵研究[J].中国生物医学工程学报,2007,26(1):74-77. 被引量:6
  • 9AMAR KACHENOUR,LAURENT ALBERA,LOTFI SENHADJI,et al.ICA L:a potential tool for BCI system[J].IEEE SIGNAL PROCESSING MAGAZINE,2008 (5):122-126. 被引量:1
  • 10Andrzej CICHOCKI,Shun-AMARI,自适应盲信号与图像处理[M].吴正国译.北京:电子工业出版社,2005. 被引量:7

二级参考文献26

  • 1万柏坤,高扬,赵丽,綦宏志.脑-机接口:大脑对外信息交流的新途径[J].国外医学(生物医学工程分册),2005,28(1):4-9. 被引量:22
  • 2边肇祺 张学工.模式识别(第二版)[M].北京:清华大学出版社,1998.. 被引量:4
  • 3Blankertz B,Müller KR,Curio G,et al.The BCI competition 2003:progress and perspectives in detection and discrimination of EEG single trials[J].IEEE Trans Biomed Eng,2004,51 (6):1044-1051. 被引量:1
  • 4Wolpaw JR,Birbaumer ND,McFarland J,et al.Brain-computer interfaces for communication and control[J].Clin.Neurophysiol,2002,113(6):767-791. 被引量:1
  • 5Bostanov W.BCI competition 2003-Data Sets Ⅰb and Ⅱb:feature extraction from Event-Related brain potentials with the continuous wavelet transform and the t-Value sealogram[J].IEEE Trans Biomed Eng,2004,51(6):1057-1061. 被引量:1
  • 6Brett DM,Justin WH,Sebastian S.BCI Competition 2003-Data Set Ⅰa:combining gamma-band power with slow cortical potentials to improve single-trial classification of electrooncephalographic signals[J].IEEE Trans Biomed Eng,2004,51(6):1052-1056. 被引量:1
  • 7Blanchard G,Blankertz B.BCI Competition 2003-Data Set Ⅱa:spatial patterns of self-controlled brain rhythm modulations[J].IEEE Trans Biomed Eng,2004,51(6):1062-1066. 被引量:1
  • 8Weiskopf N,Mathiak K,Simon WB,et al.Principles of a braincomputer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI)[J].IEEE Trans Biomed Eng,2004,51(6):966-970. 被引量:1
  • 9Choi Kyoung ho,Minoru SASAKI.Brain-Wave bio potentials based mobile robot control:wavelet-neural network pattern recognition approach[A].In:Proceedings of the IEEE International Conference on Systems,Man and Cybernetics[C].2001.322-328. 被引量:1
  • 10Donchin E,Spencer KM,Wijesinghe R.The mental prosthesis:Assessing the speed of a P300-based brain-computer interface[J].IEEE Trans Rehab Eng,2000,8(2):174-179. 被引量:1

共引文献31

同被引文献12

  • 1WOLPAW J R,BIRBAUMER N,MCFARLAND D J.Brain-computer interfaces for communication and control[].Com-mun ACM.2011 被引量:1
  • 2AM Martinez,AC Kak.PCA versus LDA[].IEEE Transactions on Pattern Analysis and Machine Intelligence.2001 被引量:1
  • 3J. Liu,S. Chen,X. Tan.A study on three linear discriminant analysis based methods in small sample size problem[].Pattern Recognition.2008 被引量:1
  • 4CEVIKALP H,NEAMTU M,WILKES M,et al.Discriminative Common Vectors for Face Recognition[].IEEE Transactions on Pattern Analysis and Machine Intelligence.2005 被引量:1
  • 5LUIS F A,JAIME G G.Brain computer interfaces,a review[].Sensors.2012 被引量:1
  • 6CEVIKALP H,BARKANA B.A comparison of the commonvector and the discriminative common vector methods for facerecognition[].The th World Multi-Conference on Sys-temicCybernetics and Informatics.2005 被引量:1
  • 7CEVIKALP H,NEAMTU M,WILKES M.Discriminativecommon vectors method with kernels[].IEEE Transactionson Neural Network.2006 被引量:1
  • 8LIU J,CHEN S C.Discriminant common vectors versusneighbourhood components analysis and Laplacianfaces:acomparative study in small sample size problem[].Image VisComput.2006 被引量:1
  • 9ZUO W,ZHANG H Z,ZHANG D,et al.Post-processedLDA for face and palmprint recognition:What is the rationale[].Signal Processing.2010 被引量:1
  • 10HSU W Y.EEG-based motor imagery classification using en-hanced active segment selection and adaptive classifier[].Computers in Biology and Medicine.2011 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部