摘要
对流行的神经网络算法和无学习率的神经网络算法做了比较.流行的人工神经网络算法在误差反演过程中需要加入学习率,依次减少误差,逐渐逼近正确的拟合多项式,计算精度很高.无学习率的神经网络算法在进行权值调整时不需要加入学习率,减少了计算量,增加运算速度,计算精度也很高.它们可以应用于传感器信号处理中,流行的神经网络算法适用于压力传感器的温度补偿,无学习率的神经网络算法可用于对范德堡函数多项式拟和.
A comparison between the popular neural-network algorithm and a new neural-network algorithm without learning rate is introduced. The former has to use learning rate to reduce the error scale gradually in its iterative processing until getting a right fitting polynomial. Therefore, it has a more perfect precision. The latter, however, dose not use learning rate in the adjustment of weight value. As a result, the amount of calculation decreases, and the operating speed increases. It has also a more perfect precision. Both are all used for the Signal Processing in Sensors. For example: the former is used for the temperature compensation for pressure sensors, the latter is used for the polynomial fitting for Van der Pauw s' function.
出处
《河北工业大学学报》
CAS
北大核心
2010年第1期56-61,共6页
Journal of Hebei University of Technology
关键词
BP神经网络算法
流行的神经网络算法
温度补偿
学习率
范德堡多项式
back propagation neural-net algorithm
popular neural-net algorithm
temperature compensate
learning rate
the polynomial of Van der Pauw's function