期刊文献+

传感器信号处理中的两种神经算法的比较

The Comparison between the Two Neural-network Algorithms of Signal Processing in Sensors
下载PDF
导出
摘要 对流行的神经网络算法和无学习率的神经网络算法做了比较.流行的人工神经网络算法在误差反演过程中需要加入学习率,依次减少误差,逐渐逼近正确的拟合多项式,计算精度很高.无学习率的神经网络算法在进行权值调整时不需要加入学习率,减少了计算量,增加运算速度,计算精度也很高.它们可以应用于传感器信号处理中,流行的神经网络算法适用于压力传感器的温度补偿,无学习率的神经网络算法可用于对范德堡函数多项式拟和. A comparison between the popular neural-network algorithm and a new neural-network algorithm without learning rate is introduced. The former has to use learning rate to reduce the error scale gradually in its iterative processing until getting a right fitting polynomial. Therefore, it has a more perfect precision. The latter, however, dose not use learning rate in the adjustment of weight value. As a result, the amount of calculation decreases, and the operating speed increases. It has also a more perfect precision. Both are all used for the Signal Processing in Sensors. For example: the former is used for the temperature compensation for pressure sensors, the latter is used for the polynomial fitting for Van der Pauw s' function.
出处 《河北工业大学学报》 CAS 北大核心 2010年第1期56-61,共6页 Journal of Hebei University of Technology
关键词 BP神经网络算法 流行的神经网络算法 温度补偿 学习率 范德堡多项式 back propagation neural-net algorithm popular neural-net algorithm temperature compensate learning rate the polynomial of Van der Pauw's function
  • 相关文献

参考文献14

  • 1陈希孺,王松桂..线性模型中的最小二乘法[M],2003.
  • 2Sun Yicai, Meng Qinghao, Chen Zhiyong, et al. Normalizingthepolynomial-matchforthenon-linearsignalintransducers [J]. Sensors and Actuators A, 2005 (125): 76-83. 被引量:1
  • 3丛玉良,王宏志编著..数字信号处理原理及其MATLAB实现[M].北京:电子工业出版社,2005:246.
  • 4焦李成著..神经网络系统理论[M].西安:西安电子科技大学出版社,1990:284.
  • 5Martin T Hagan, Howard B Demuth, Mark H Beale. Neural network design [M]. PWS Publishing Company, 1996. 被引量:1
  • 6张耀锋,孙以材,邢晓辉.基于人工神经网络的压力传感器的温度补偿[J].电子学报,2008,36(2):358-361. 被引量:35
  • 7Robert H N. Neurocomputing [M]. New York: Addison-Wesley Publishing Company, 1990. 被引量:1
  • 8Mirszal A R. Artificial Intelligence [M]. London: Chapman and Hall, 1990. 被引量:1
  • 9王伟,孙以材,汪鹏.无学习率权值调整神经计算法拟合范德堡多项式[J].电子器件,2008,31(3):1015-1018. 被引量:1
  • 10Sun Yicai, Shi Junsheng, Meng Qinghao. Measurement of sheet resistance of cross microareas using a modified Van der Pauw method [J]. Semieond Sci Technol, 1996 (11): 805-811. 被引量:1

二级参考文献25

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部