摘要
选取空间Cg为相空间,考察具有无限时滞随机泛函微分方程解的存在唯一性,利用Picard迭代序列、伊藤公式以及Doob鞅不等式,得到了无限时滞随机泛函微分方程的解在区间[t0,∞)上的存在性与唯一性,进而得到了近似解与精确解之间的误差估计,其中t0为正常数.
With space Cg as phase space, the existence and uniqueness of the solutions for stochastic function- al differential equations with infinite delay were considered. By means of Picard iterative sequence, ho formula and Doob martingale inequality, it has been proved that stochastic functional differential equation with infinite delay has a unique solution at the interval [ t0, ∞), further, the estimate of the error between the approximate solution and the accurate solution has been obtained, where to is a positive number.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2010年第2期207-213,共7页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:10726062)
福建省自然科学基金(批准号:S0750007)
关键词
随机泛函微分方程
无限时滞
存在性
唯一性
stochastic functional differential equations
infinite delay
existence
uniqueness