期刊文献+

三维复Ginzburg-Landau方程的一些精确解 被引量:4

Some Exact Solutions to a Kind of 3D Complex Ginzburg-Landau Equation
下载PDF
导出
摘要 通过辅助函数法与齐次平衡原理,得到了三维复Ginzburg-Landau方程的一些精确周期波和扭结波解. By the method of auxiliary function together with the homogeneous balance principle, some exact periodic wave and kink wave solutions are obtained for a kind of 3D Complex Ginzburg-Landau equation.
出处 《肇庆学院学报》 2010年第2期6-8,共3页 Journal of Zhaoqing University
关键词 Ginzburg—Landau 辅助函数法 周期波 扭结 Ginzburg-Landau auxiliary function method periodic wave kink
  • 相关文献

参考文献8

  • 1FANG Fang,XIAO Yah.Stability of chirped bright and dark soliton-like solutions of the cubic complex Ginzburg-Landau equation with variable coefficients[J].Opfics Communications,2006,268(12):305-310. 被引量:1
  • 2DAI Zhengde,LI Zhitian,LIU Zhenjiang,et al.Exact homoclinic wave and solition solutions for the 2D Ginzburg-Landau equation[J].Physies Letters A,2008,372(17):3 010-3 014. 被引量:1
  • 3DAI Zhengde,LI Shaolin,DAI Qingyun,et al.Singular periodic soliton solutions and resonance for the Kadomtsev-Petviashvili equation, Chaos[J].Solitions and Fraetals,2007,34(4): 1 148-1 153. 被引量:1
  • 4AKHMEDIEV N,ANKIEWICZ A.Solitons:Nonlinear Pulses and Beams[M].London:Chapman & Hali,1997. 被引量:1
  • 5李栋龙,郭柏灵,刘旭红.三维复Ginzburg-Landau方程的整体解的存在惟一性[J].高校应用数学学报(A辑),2004,19(4):409-416. 被引量:7
  • 6ZHONG Penghong,YANG Ronghui,YANG Ganshan.Exact periodic and blow up solutions for 2D Ginzburg-Landau equation [J]. Physics Letters A,2008,373:19-22. 被引量:1
  • 7ZHOU Yubin,WANG Mingliang,MIAO Tiande.The periodic wave solutions and solitary wave solutions for a class of nonlinear partial differential cquations[J].Physics Letters A,2004,323(1/2):77-88. 被引量:1
  • 8李志斌编著..非线性数学物理方程的行波解[M].北京:科学出版社,2007:161.

二级参考文献8

  • 1Ghidaglia J M,Heron B. Dimension of the attractor associated to the Ginzburg-Landau equation[J]. Phys. 1987,28:282-304. 被引量:1
  • 2Doering C,Gibbon J D,Holm D,et al. Low-dimensional behavior in the complex Ginzburg-Landau equation[J]. Nonlinearity, 1988,1: 279-309. 被引量:1
  • 3Promislow K. Induced trajectories and approximate inertial manifolds for the Ginzburg-Landau partial equation[J]. Physica D, 1990,41: 232-252. 被引量:1
  • 4Bartuccelli M,Constantin P,Doering C,et al. On the possibility of soft and hard turbulence in the complex Ginzburg-Landau equation[J]. Physica D, 1990,44: 421-444. 被引量:1
  • 5Doering C R,Gibbon J D,Levermore C D. Weak and strong solutions of the complex GinzburgLandau equation[J]. Phys D, 1994,71:285-318. 被引量:1
  • 6Mielke A. The complex Ginzburg-Landau equation on large and unbounded domains: sharper bounds and attractors [J]. Nonlinearity, 1997,10: 199-222. 被引量:1
  • 7Henry D. Geometric Theory of Semilinear Parabolic Equation[M]. Berlin:Spring-Verlag, 1981. 被引量:1
  • 8Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equation [M].Berlin: Spring-Verlag, 1983. 被引量:1

共引文献6

同被引文献30

  • 1李向正,张金良,王明亮.Ginzburg-Landau方程的一种解法[J].河南科技大学学报(自然科学版),2004,25(6):78-81. 被引量:11
  • 2李栋龙,郭柏灵,刘旭红.三维复Ginzburg-Landau方程的整体解的存在惟一性[J].高校应用数学学报(A辑),2004,19(4):409-416. 被引量:7
  • 3GHIDAGLIA J M , HERON B. Dimension of the attractor associated to the Ginzburg-Landau equation[J] Physica D : Nonlinear Phenomena, 1987, 28(3) : 282-304. 被引量:1
  • 4DOERING C R, GIBBON J D, HOLM D D, et al. Low-dimensional behavior in the complex Ginzburg-Landau e quation[J]. Nonlinearity, 1988, 1(2) : 279-309. 被引量:1
  • 5DAI Zheng-de, LI Zi-tian, LIU Zhen-jiang, et al. Exact homoclinic wave and solition solutions for the 2D Ginzburg- Landau equationl[J].Physics Letters A, 2008, 372(17) : 3010-3014. 被引量:1
  • 6ZHANG Peng-hong, YANG Rong-hui,YANG Gan-shan. Exact periodic and blow up solutions for 2D Ginzburg- Landau equation[J]. Physics Letters A, 2008, 373 (1) : 19-22. 被引量:1
  • 7LIU Shi-kuo, FU Zun-tao, LIU Shi-da, et al. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations[J]. Physics Letters A, 2001,289(1/2): 69-74. 被引量:1
  • 8PARKES E J, DUFFY B R, ABBOTT P C. The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations[J]. Physics Letters A, 2002, 295(5/6) : 280-286. 被引量:1
  • 9ZHOU Yu-bin, WANG Ming-liang, WANG Yue-ming. Periodic wave solutions to a coupled KdV equations with variable coefficients [J]. Physics Letters A, 2003, 308(1): 31-36. 被引量:1
  • 10ZHOU Yu-bin, WANG Ming-liang, MIAO Tian-de. The periodic wave solutions and solitary wave solutions for a class of nonlinear partial differential equations[J]. Physics Letters A, 2004, 323(1/2) : 77-88. 被引量:1

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部