期刊文献+

应用EN、PCA和RBF网络评价建设项目动态联盟的候选投标项目 被引量:1

Evaluate Candidate Bidding Projects of Virtual Enterprise of Construction Project Using EN,PCA and RBF Network
原文传递
导出
摘要 基于建设项目动态联盟候选投标项目评价的内涵分析,确定了候选投标项目评价的决定因素,构建了候选投标项目评价的指标体系。首先通过计算欧氏贴近度,剔除了贴近度较小的指标,然后采用主成分分析将众多指标进行综合,消除样本间的信息重叠,降低RBF网络的输入维数。针对候选投标项目评价系统的非线性特征,采用RBF网络高度非线性映射能力,对某建设项目动态联盟的候选投标项目进行了评价。评价结果表明EN、PCA与RBF网络相结合的方法比PCA与RBF网络相结合的方法及单纯的RBF网络方法具有较高的精确度和较好的拟合效果。整个数据处理过程用软件完成,成本低廉、运算速度快捷,能够克服数据处理流程的复杂性,具有较好的实用性。 Based on the analysis on the meaning of evaluating candidate bidding projects of virtual enterprises of construction project,we identify the determinants of evaluating candidate bidding projects,and establish the evaluation criteria system for candidate bidding projects.Firstly,through computing Euclid nearness,we eliminate two criteria whose Euclid nearness is too small.Then,through principal component analysis,we synthesize numerous criteria,eliminate information overlapping of the sample,and reduce the input dimension of RBF network.According to the nonlinear feature of candidate bidding projects evaluation system,using RBF network altitudinal nonlinear map,we evaluate candidate bidding projects for a virtual enterprise of construction project.The results show that the conjoint method-EN,PCA and RBF network is more precise and fits better than PCA and RBF network method and the single RBF network method.The data is computed by software which can make the whole computing process cheap and swift,and can overcome the complexity of the data computing process,which has good practicability.
作者 刘雷
机构地区 南京审计学院
出处 《管理评论》 CSSCI 北大核心 2010年第2期121-128,共8页 Management Review
基金 国家自然科学基金项目(70571038)
关键词 候选投标项目评价 建设项目动态联盟 欧氏贴近度 主成分分析 RBF神经网络 candidate bidding projects evaluation virtual enterprise of construction project Euclid nearness(EN) principal component analysis(PCA) RBF neural network
  • 相关文献

参考文献20

  • 1B.K.Baiden,A.D.F.Price,A.R.J.Dainty. The extent of team integration within construction projects[J]. International Journal of Project Management,2006,24(1):13-23. 被引量:1
  • 2C.K.Prahalad,Gary Hamel. The core competence of the corporation[J]. Harvard Business Review,1990,68(3):79-91. 被引量:1
  • 3刘雷,李南.建设项目动态联盟运作模式研究[J].工业技术经济,2007,26(3):18-21. 被引量:9
  • 4Eddie W. L. Cheng, Heng Li. Construction partnering process and associated critical success factors: quantitative investigation[J]. Journal of Management in Engineering,2002,18(4): 194-202. 被引量:1
  • 5Sherif Mohamed.Performance in international Construction Joint Ventures:Modeling Perspective[J]. Journal of Construction Engineering and Management,2003,129(6):619-626. 被引量:1
  • 6Farzad Khosrowshahi. Neural network model for contractors' prequalification for local authority projects[J]. Engineering Construction and Architectural Management,1999,6(3):315-328. 被引量:1
  • 7Lain K.C., Hu T., Ng S.T., Skitmore M., Cheung S.O.A fuzzy neural network approach for contractor prequalification[J]. Construetion Management and Economics,2001,19(2):175-188. 被引量:1
  • 8张运生,曾德明,张利飞,秦吉波.基于RBF&BP神经网络的R&D绩效隐患预警与控制模型[J].系统工程理论方法应用,2004,13(5):419-424. 被引量:6
  • 9李鸿吉编著..模糊数学基础及实用算法[M].北京:科学出版社,2005:544.
  • 10韩伟,李钢.主成分分析在地区科技竞争力评测中的应用[J].数理统计与管理,2006,25(5):512-517. 被引量:34

二级参考文献26

  • 1郭秀清,严隽薇.基于项目管理的虚拟企业性能评价指标体系和方法研究[J].制造业自动化,2004,26(9):1-4. 被引量:4
  • 2严玲,赵黎明.公共项目契约本质及其与市场契约关系的理论探讨[J].中国软科学,2005(9):148-155. 被引量:31
  • 3Seongkyu Yoon, MacGregor John F. Statistical and causal model-based approaches to fault detection and isolation[J]. AIChE J, 2000, 46(9) :1813-1824. 被引量:1
  • 4Dong D, Thomas J. Batch tracking via nonlinear principal component analysis[J]. AIChE J, 1996, 42(8):2199-2208. 被引量:1
  • 5Rotem Y, Wachs A, Lewin D R. Ethylene compressor monitoring using model-based PCA[J]. AIChE J,2000, 46(9) :1825-1836. 被引量:1
  • 6Patton R J, Chen J, Benkhedda H. A study on neurofuzzy systems for fault diagnosis[J]. Int J of Systems Science, 2000, 31 (11): 1441-1448. 被引量:1
  • 7Jackson J E. A use's guide to principal components [M]. New York: Wiley-Inter-Science, 1991. 被引量:1
  • 8Lilybert L. Machacha, Prabir Bhattacharya,. A fuzzy-logicbased approach to project selection. IEEE Transaction on Engineering Management, 2000 47 (1): p65 ~ 73 被引量:1
  • 9Shih-Wen Hsiao. Fuzzy logic based decision models for product design, International Journal of Industrial Ergonomics, 1998(21): p103~ 116 被引量:1
  • 10James H. Paek, Yong W. Lee, Thomas R. Napier. Selection of design/build proposal using fussy-logic system, Journal of Construction Engineering and Management, 1992 (2): p303~ 317 被引量:1

共引文献89

同被引文献19

  • 1陈守东,杨莹,马辉.中国金融风险预警研究[J].数量经济技术经济研究,2006,23(7):36-48. 被引量:111
  • 2Altman. Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy[J]. Journal of Fi- nance, 1968,23 (4) : 589-- 609. 被引量:1
  • 3Ohlson. Financial Rations and the Probabilistic Prediction of Bankruptcy[J]. Journal of Accounting Research, 1980, 18 (1) : 109-- 130. 被引量:1
  • 4Laitinen E K. Predicting a corporate credit analyst's risk estimate by logistic and linear models [J]. International Review of Financial Analysis,1999,8(2) .97--121. 被引量:1
  • 5Zmijewski. Methodological issues related to the estimated of financial distress prediction models[J]. Journal of Ac- counting Research, 1984,22 (1) : 59-- 82. 被引量:1
  • 6Kaminsky, C. , Lizondo, S. and Reinhart, C. Leading Indi- catiors of Currency Crises[R]. MF staff paper, 1998,45 (1) :1--48. 被引量:1
  • 7Odom,Sharda. Neural Network for Bankruptcy Prediction [C]. International Joint Conterenee on Neural Network, 1990.17--70. 被引量:1
  • 8Desai V S, Crook J N, Overstreet G A. A comparison of neural network and linear scoring models in the credit u- nion environment [J ]. European Journal of Operational Research, 1996,95 (1) : 24-- 37. 被引量:1
  • 9Vapnik V N. The Nature of Statistical Learning Theory [M]. 1995. 被引量:1
  • 10邓乃扬,田英杰.数据挖掘中的新方法一支持向量机[M].第三版.北京:科学出版社,2006. 被引量:1

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部