期刊文献+

关于电磁场的自然单元法 被引量:4

Natural element method about EMF
下载PDF
导出
摘要 有限元法和无网格法在电磁场数值计算中已经得到了广泛的应用,然而有限元法存在前处理网格剖分问题,无网格法存在计算时间长、边界条件和不连续面难处理等问题。针对以上问题,本文提出了利用自然单元法求解电磁场的方法,该方法根据场域中的离散点的信息构造自然邻点插值函数,最后算出场值。通过算例证明了该方法在电磁场计算中的可行性。 Finite element method and nomesh method in the numerical calculation of electromagnetic fields has been widely used, however, there are problems of pre - processing finite element method, mesh generation, long time grid computing , boundary conditions and discontinuities refractory issues. To solve the above problem, this paper presents the natural element method used to solve electromagnetic field method in the Field of discrete points according to the information structure of natural neighbor interpolation function, the value of the final count appeared. A numerical example verifies the feasibility of electromagnetic field calculation method.
出处 《沈阳航空工业学院学报》 2010年第1期52-55,共4页 Journal of Shenyang Institute of Aeronautical Engineering
关键词 自然单元法 有限元法 无网格法 数值计算 natural element method finite element method nomesh method numerical calculation
  • 相关文献

参考文献8

  • 1Armando Duarte C. A review of some meshless methods to solve partial differential equations[ R]. TIAM Report 95 - 106. 被引量:1
  • 2曹国金,姜弘道.无单元法研究和应用现状及动态[J].力学进展,2002,32(4):526-534. 被引量:45
  • 3Braun J, Sambridge M. A numerical method for sovling partial differential equations on highly irregular evolve - ing grids [ J ]. Nature 1995,376:655 - 660. 被引量:1
  • 4Sukumar N, Moran B, Belytschko T. The natural element method in solid mechanics[J]. Journal for Engineering ,Numerical Methods in 1998,43 (5) : 839 - 887. 被引量:1
  • 5刘金义,刘爽.Voronoi图应用综述[J].工程图学学报,2004,25(2):125-132. 被引量:74
  • 6Sukumar N. Sibson and non - Sibsonian interpolants for elliptic partial differential equations [ A ]. In : Proceedings of First MIT Conference on Computational Fluid and Solid Mechanics[ C ]. [ s. l. ] : [s.n. ] ,2001,1665 -1667. 被引量:1
  • 7N. Sukumar. Voronoi cell finite difference method for the diffusion operator on arbitrary unstructered grids[ C]. Depa -rtment ofcivil and environmental engineering University of California, Davis, CA95616,U. S. A. 被引量:1
  • 8戴斌..自然单元法算法与应用[D].上海交通大学,2003:

二级参考文献126

  • 1[48]Ponamgi, M K, et al. Incremental algorithms for collision detection between solid models[J]. IEEE Transactions on Visualization and Computer Graphics, 1997, 3(1): 51~64. 被引量:1
  • 2[49]Fujita K, et al. Voronoi diagram based cumulative approximation for engineering optimization[EB/OL].http://syd.meim.eng.osaka-u.ac.jp/papers/2000/09_AI AA_co.ps. 被引量:1
  • 3[50]Yahagi H, et al. The forest method as a new parallel tree method with the sectional Voronoi tessellation[EB/OL]. http://www.mpia-hd.mpg.de/theory/mori/preprints/ymy99 .ps.gz. 被引量:1
  • 4[51]Allard D. Non parametric maximum likelihood estimation of features in spatial point processes using Voronoi tessellation[EB/OL].http//www. stat.washington.edu/tech.reports/tr293R.ps. 被引量:1
  • 5[52]Papadopoulo E, Lee D T. Critical area computation-a new approach[EB/OL]. http://web.eecs.nwu.edu/~dtlee/ISPD98.ps. 被引量:1
  • 6[53]Swanson K, et al. An optimal algorithm for roundness determination on convex polygons[J], Computational Geometry: Theory & Applications, 1995, 5:225~235. 被引量:1
  • 7[54]Kaplan C. Voronoi diagrams and ornamental design[EB/OL].http://www. cs.washington.edu/homes/csk/tile/papers/Kaplan_isama1999.pdf. 被引量:1
  • 8[6]Albers G, et al. Voronoi diagrams of moving points[J].International Journal of Computational Geometry & Applications, 1998, 8(3): 365~380. 被引量:1
  • 9[7]Aurenhammer F. Power diagrams: properties,algorithms, and applications[J]. SIAM Journal on Computing, 1987, 16(1): 78~96. 被引量:1
  • 10[8]Augenbaum J M, Peskin C S. On the construction of the Voronoi mesh on a sphere[J]. Journal of Computational Physics, 1985, 59: 177~192. 被引量:1

共引文献117

同被引文献40

  • 1蒋亮,邓居智,陈辉,祝福荣,孟小杰.基于有限差分的2.5维直流电阻率法的改进[J].东华理工大学学报(自然科学版),2013,36(S1):68-72. 被引量:2
  • 2钟万勰.结构动力方程的精细时程积分法[J].大连理工大学学报,1994,34(2):131-136. 被引量:509
  • 3谭国文,王洪涛,岑松,姚振汉.用于模拟压电复合材料平面问题的边界点法[J].清华大学学报(自然科学版),2007,47(5):734-737. 被引量:1
  • 4刘正兴,孙雁,王国庆,等.计算固体力学[M].2版.上海:上海交通大学出版社,2010. 被引量:2
  • 5Sze KY, Yang XM, Yao LQ. Stabilized plane and axisymmetric piezoelectric finite element models [J]. Finite Elements in Analysis and Design, 2004, 40: 1105~1122. 被引量:1
  • 6Ohs R R, Aluru N R. Meshless analysis of piezoelectric devices [J]. Computational Mechanics, 2001, 27: 23~36. 被引量:1
  • 7Liu G R, Dai K Y, Lim K M, et al. A point interpolation mesh free method for static and frequency analysis of two-dimensional piezoelectric structures [J]. Computational Mechanics, 2002, 29: 510~519. 被引量:1
  • 8Sladek J, Sladek V, Zhang Ch, et al. Meshless local Petrov-Galerkin method for plane piezoelectricity [J]. CMC: Computers, Materials & Continua, 2004, 1: 129~140. 被引量:1
  • 9Sukumar N, Moran B, Belytschko T. The natural elements method in solid mechanics [J]. International Journal for Numerical Methods in Engineering, 1998, 43: 839~887. 被引量:1
  • 10()玻恩(Born,M.),黄昆著,葛惟锟,贾惟义.晶格动力学理论[M]北京大学出版社,1989. 被引量:1

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部