期刊文献+

粒子群神经网络用于电磁兼容预测 被引量:3

PSO-based Neural Network Used for Prediction of EMC
下载PDF
导出
摘要 为了更好地对电磁兼容进行预测,提出采用人工神经网络的方法。传统的BP神经网络易于陷入局部最优,因此采用粒子群算法对网络权值进行优化。以平行线间电磁耦合干扰为具体算例,证明本算法的预测结果的均方误差仅有10-4数量级。因此,使用PSO优化网络权值的方法有效,且神经网络模型能准确预测电磁兼容。 In order to predict the electromagnetic compatibility more effectively, an improved method based on artificial neural network was proposed. Due to the fact that BP neural network was inclined to be trapped in local extrama, a novel network--particle swarm optimization based neural network--was proposed in this paper to solve the above shortcoming. The specific example on electromagnetie coupling interference between two parallel wires demonstrates the median square error of the prediction is more or less only 10^-4 order of magnitude. Thus, this PSO-based neural network is effective, and our model can predict electromagnetic compatibility accurately.
出处 《无线电工程》 2010年第3期39-41,共3页 Radio Engineering
基金 东南大学优秀博士学位论文基金(YBJJ0908) 河海大学青年科技基金(08D002-04)
关键词 电磁兼容 预测 神经网络 electromagnetic compatibility prediction neural network
  • 相关文献

参考文献7

  • 1SMIRNOV A P, KOROLEV D N. The Special Features of Certifying Open Test Sites for Tests on Technical Equipment for Electromagnetic Compatibility [ J ]. Measurement Techniques, 2006,49(12) :706 - 710. 被引量:1
  • 2GERASIMOV A I, GORKUNOV V S, SKRIPKA G M. Provision of Electromagnetic Compatibility During Creation of Electrophysical Facilities [ J ]. Instruments and Experimental Techniques, 2005,16 ( 11 ) : 539 - 548. 被引量:1
  • 3DUCHAMP G, CASTAGNET D, MERESSE A. Near-field EMC Study to Improve Electronic Component Reliability[ J]. Microelectronics Reliability,2007,47(9) : 1668 - 1672. 被引量:1
  • 4李永明,祝言菊,李旭,俞集辉,汪泉弟.电磁兼容的人工神经网络预测技术分析[J].重庆大学学报(自然科学版),2008,31(11):1313-1316. 被引量:14
  • 5ZHANG Y D,WU L N. Pattern Recognition Method via PCNN and Tsallis Entropy [ J ] . Sensors, 2008,8 ( 11 ) : 7518 - 7529. 被引量:1
  • 6ZHANG Y D, WU L N. Improved Image Filter based on SPCNN[J] .Science in China E edition: Information Science, 2008,51(12) :2115 - 2125. 被引量:1
  • 7张煜东,吴乐南.基于二维Tsallis熵的改进PCNN图像分割[J].东南大学学报(自然科学版),2008,38(4):579-584. 被引量:25

二级参考文献31

共引文献34

同被引文献26

  • 1Bardera A,Feixas M,Boada I,et al.Image registration by compression.Information Sciences,2010;180(7):1121-1133. 被引量:1
  • 2Krish K,Heinrich S,Snyder W E,et al.Global registration of overlapping images using accumulative image features.Pattern Recognition Letters,2010;31(2):112-118. 被引量:1
  • 3Vercauteren T,Pennec X,Perchant A,et al.Diffeomorphic demons:Efficient non-parametric image registration.NeuroImage,2009;45(1,Supplement 1):S61-S72. 被引量:1
  • 4Andreasson H,Lilienthal A J.6D scan registration using depth-interpolated local image features.Robotics and Autonomous Systems,2010;58(2):157-165. 被引量:1
  • 5Klein A,Ghosh S S,Avants B,et al.Evaluation of volume-based and surface-based brain image registration methods.NeuroImage,2010;51(1):214-220. 被引量:1
  • 6Grimson E,Kikinis R.Registration for image-guided surgery.ISAAC N B,Phd.Handbook of Medical Image Processing and Analysis(Second Edition).Burlington;Academic Press.2009:695-705. 被引量:1
  • 7EMMANUELLE G.Electromagnetic compatibility uncer-tainty,risk,and margin management[J].IEEE Transac-tions on Electromagnetic Compatibility,2010,52(1):3-10. 被引量:1
  • 8RAMDANI M.The electromagnetic compatibility of inte-grated circuits:past,present,and future[J].IEEE Trans-actions on Electromagnetic Compatibility,2009,51(1):78-100. 被引量:1
  • 9LI Xu,YU Ji-hui,ZHU Y W,et al.Prediction of electro-magnetic compatibility problems based on artificial neuralnetworks[C]//WAC 2008Automation Congress.Hawaii,HI:WAC,2008:1-4. 被引量:1
  • 10TEULINGS W,VRIGNON B.Fast conducted EMI predic-tion models for smart high-side switches[C]//2011 8thWorkshop on Electromagnetic Compatibility of IntegratedCircuits.Dubrovnik:EMC,2011:159-164. 被引量:1

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部