期刊文献+

氢气/空气预混合微尺度催化燃烧 被引量:6

Catalytic Combustion of Hydrogen/Air Mixture Inside Micro-Tube
下载PDF
导出
摘要 通过耦合专用软件FLUENT和CHEMKIN并采用空间气相和表面催化详细化学反应机理,对氢气和空气的预混合气体在微型管道内的催化燃烧过程进行数值模拟,讨论了不同反应模型的燃烧特性以及预混合气体入口速度和管径对催化燃烧反应的影响.计算结果表明,表面催化反应对空间气相反应有抑制作用;入口速度和管径对氢气的催化燃烧过程有重要的影响,在入口速度较小时,燃烧主要是空间气相化学反应,随着入口速度的增大,燃烧过程同时存在着表面催化反应和空间气相反应两种控制因素,在入口速度较大时,燃烧主要是表面催化燃烧过程;随着管径的减小,微型管道内反应的最高温度降低.此结果为在微型动力系统中实现催化燃烧以及扩展燃烧极限提供了理论依据. Catalytic combustion of hydrogen/air mixture inside a micro-tube was numerically investigated by using the FLUENT coupled with the CHEMKIN and detailed chemical reaction mechanisms. The combustion characteristics of different reaction models and the influence of inlet velocity and tube diameters on surface catalytic combustion reaction were discussed. The computational results indicate that surface catalytic combustion restrains gas phase combustion. Inlet velocity and tube diameters have important influence on catalytic combustion of hydrogen. For smaller inlet velocities, reaction is dominated by gas phase combustion. As the inlet velocity increases, there exist both surface catalytic combustion and gas phase combustion. For bigger inlet velocities, reaction is dominated by surface catalytic combustion, The temperature of flame core decreases with the decrease of tube diameter. Some theoretical evidence is provided for the application of catalytic combustion to micro-electromechanical system (MEMS) and extension of combustion limits.
作者 陈俊杰 王谦
出处 《燃烧科学与技术》 EI CAS CSCD 北大核心 2010年第1期51-56,共6页 Journal of Combustion Science and Technology
基金 国家自然科学基金资助项目(50576032) 江苏大学博士生科研创新基金资助项目(CX0676X)
关键词 氢气 微尺度 催化燃烧 数值模拟 燃烧特性 hydrogen micro-scale catalytic combustion numerical simulation combustion characteristics
  • 相关文献

参考文献12

  • 1Femandez-pello A C. Micro power generation using combustion :Issues and approaches [J]. Proceeding of the Combustion lnstitute, 2002, 29(1): 883-899. 被引量:1
  • 2钟北京,洪泽恺.微燃烧器内甲烷催化燃烧的数值模拟[J].热能动力工程,2003,18(6):584-588. 被引量:32
  • 3伍亨,钟北京.空间反应和入口速度对甲烷催化反应的影响[J].清华大学学报(自然科学版),2005,45(5):670-672. 被引量:24
  • 4Maruta K, Takeda K, Ahn J M, et al. Extinction limits of catalytic combustion in microchannels [J]. Proceedings of the Combustion Institute, 2002, 29(1): 957- 963. 被引量:1
  • 5Norton D G, Vlachos D G. Combustion characteristics and flame stability at the microscale: A CFD study of premixed methane/air mixtures [J]. Chemical Engineering Science, 2003, 58(21): 4871-4882. 被引量:1
  • 6曾文,解茂昭.烷烃催化燃烧的数值模拟[J].燃烧科学与技术,2005,11(6):499-505. 被引量:12
  • 7Miller J A, Bowan C T. Mechanism and modeling of nitrogen chemistry in combustion [J]. Progress in Energy and Combustion Science, 1989, 15 (4) : 287-338. 被引量:1
  • 8Deutschmann O, Schmidt R, Behrendt F, et al. Numerical modeling of catalytic ignition[C]//Twenty-Sixth Symposium (International) on Combustion, 1996: 1747-1754. 被引量:1
  • 9Chen Guan Bang, Chao Yei Chin, Chen Chih Peng. Enhancement of hydrogen reaction in a micro-channel by catalyst segmentation [J]. International Journal of Hydrogen Energy, 2008, 33(10): 2586-2595. 被引量:1
  • 10Deutschmann O, Maier L I, Riedel U, et al. Hydrogen assisted catalytic combustion of methane on platinum [J]. Catalysis Today, 2000, 59(1/2) : 141-150. 被引量:1

二级参考文献21

  • 1[1]FLUENT4.5.6 User's Guide[Z], Fluent Inc Lebanon, NH 1998. 被引量:1
  • 2[2]Deutschmanno DETCHEM 1.4 USER Manual, Steinbeis-Transferzentrum-Simulation reaktiver Stromungen[Z], Heidelberg Germay. 被引量:1
  • 3[3]HICKMAN D A, SCHMIT L D. Steps in CH4 oxidation on Pt and Rh surface: High-temperature reactor simulations[J]. AIChE Journal, 1993, 39:1164-1177. 被引量:1
  • 4[4]DEUTSCHMANN O, BEHRENDT F, WARNATZ J. Modeling and simulation of heterogeneous oxidation of methane on platinum foil[J]. Catalysis Today, 1994,21:461-470. 被引量:1
  • 5[5]BEHRENDT F, DEUTSCHMANN O, MASS U, et al. Simulation and sensitivity analysis of the heterogeneous oxidation of methane on a platinum foil[J]. Journal of Vacuum Sci Tech, 1995, A13:1373-1377. 被引量:1
  • 6[6]CHOU C P. Methane catalytic combustion modeling [EB/OL]. http://firebrand.me. berkeley.edu/. 被引量:1
  • 7FLUENT Inc. User's Guide V4.5.6 [M]. Lebanon, USA:Fluent Inc, 1998. 被引量:1
  • 8Deutschmann O. DETCHEM 1.4 USER Manual [M].Germany: Heidelberg University Press, 1998. 被引量:1
  • 9Kaoru M, Koichi T, Lars S, et al. Catalytic combustion in microchannel for MEMS power generation [A]. The 3rd Asia-Pacific Conference on Combustion [C]. Seoul Korea:ASPACC, 2001. 被引量:1
  • 10Deutschmann O, Schmidt R, Behrendt F, et al. Numerical modeling of catalytic ignition [J]. Proceedings of the Combustion Institute, 1996, 26: 1747 - 1754. 被引量:1

共引文献57

同被引文献72

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部