摘要
研究了免疫反应具有两种来源的乙肝病毒模型.通过对相应特征方程的分析,讨论了感染平衡态和未感染平衡态的局部稳定性,证明了基本再生数>1时疾病的持续性.通过几何方法的应用,得到了感染平衡点全局稳定性的充分条件.
In this paper,an HBV model with activated immune response of two sources is studied.By analyzing the corresponding characteristic equations,the local stability of an infected steady state and an uninfected steady state is discussed.It is proved that if the basic reproductive number is more than one,the disease is persistent.By applying a geometric method,sufficient conditions are obtained for the global stability of the endemic equilibrium.
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第1期5-10,共6页
Journal of Southwest University(Natural Science Edition)
基金
国家自然科学基金资助项目(10871162)
关键词
免疫损害
全局稳定性
持续性
第二加性复合矩阵
immune impairment
global stability
permanence
second additive compound matrix