期刊文献+

量子纠错码的一个统一构造方法 被引量:3

Unified Approach to Construct Quantum Error-correcting Code
下载PDF
导出
摘要 在量子通信和量子计算中,量子纠错码起着至关重要的作用。人们已经利用Hamming码、BCH码、Reed-Solomon码等各种循环码、常循环码、准循环码来构造量子纠错码。利用准缠绕码将这些构造方法统一起来,给出了准缠绕码包含其对偶码的充分必要条件及准缠绕码的一个新构造方法,并且利用准缠绕码构造了新的量子纠错码。 Quantum error-correcting codes play an important role in not only ctuantum communication but also ctuantum computation. All kinds of cyclic codes,for example, Hamming codes,BCH codes and Recd-Solomon codes et al.,constacyclic codes and quasi cyclic codes have been used to construct quantum error-correcting codes. An unified approach to constructctuantum error-correcting codes was presented by using ctuasi-twisted codes. A sufficient and necessary condition for quasi-twisted contained its dual codes, and a new method for constructing quasi twisted codes was given. Moreover, new cauantum quasi-twisted codes were obtained by using quasi-twisted codes.
出处 《计算机科学》 CSCD 北大核心 2010年第3期70-72,共3页 Computer Science
基金 国家重点基金项目(2007AA01Z472) 国家自然科学基金(60773002 60672119 60873144) 教育部留学回国人员科研启动基金 ISN开放课题 安徽省自然科学基金(090412251)资助
关键词 量子纠错码 准缠绕码 循环码 常循环码 准循环码 Quantum error-correcting codes, Quasi-twisted codes, Cyclic codes, Constacylic codes, Quasi-cyclic codes
  • 相关文献

参考文献17

  • 1Shor P W. Scheme for reducing decoherence in quantum memory [J]. Phys. Rev. A, 1995,52(4) : 2493-2496. 被引量:1
  • 2Steane A M. Simple quantum error correcting codes[J]. Phys. Rev. Lett. ,1996,77:793 -797. 被引量:1
  • 3Calderbank A R,et al. Quantum error correction via codes over GF(4) [J]. IEEE Trans. Inf. Theory,1998,44(4):1369-1387. 被引量:1
  • 4Li R, Li X. Binary construction of quantum codes of minimum distance three and four[J]. IEEE Trans. Inf. Theory, 2004,50(4):1331- 1336. 被引量:1
  • 5Chen H, Ling S, Xing C. Asymptotically good quantum codes exceeding the Ashikhmin Litsyn-Tsfasman bound [ J ]. IEEE Trans. Inf. Theory, 1998,47 (4) : 2055-2058. 被引量:1
  • 6马智,冯克勤.量子纠错码的Gilbert-Varshamov界和有限酉几何[J].自然科学进展,2002,12(11):1202-1204. 被引量:4
  • 7郑大钟,赵千川.量子计算和量子信息(2)[M].北京:清华大学出版社,2005. 被引量:3
  • 8Beth T,Grassl M. The quantum Hamming and Hexacodes [J]. Fortschr. Phys., 1998,46 (5) : 459-491. 被引量:1
  • 9Aly S A,Klappenecker A,Sarvepalli P K. On quantum and classical BCH codes [J]. IEEE Trans. Inf. Theory, 2007, 53 (3); 1183-1188. 被引量:1
  • 10Grassl M,Geiselmonn W, Beth T. Quantm Reed-Solomon codes [J]. AAECC, 1999,13:231-241. 被引量:1

二级参考文献1

  • 1Chen Dongsheng,Wan Zhexian. An arrangement in orthogonal geometry over finite field of Char=2[J] 1993,Acta Mathematica Sinica(1):39~47 被引量:1

共引文献4

同被引文献30

  • 1SHAO Bin,ZENG Tian-Hai,ZOU Jian.Influence of Intrinsic Decoherence on Entanglement in Two-Qubit Quantum Heisenberg XYZ Chain[J].Communications in Theoretical Physics,2005,44(2X):255-258. 被引量:4
  • 2Bennett C H,Brassard G, Popescu S,et al. Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels [J]. Phys. Rev. Lett, 1996,76:722. 被引量:1
  • 3Kok P, Munro W J, Nemoto K, et al. Linear optical quantum computing [ D]. Oxford : Oxford University,2006. 被引量:1
  • 4Terzis A F. Emmanuel Paspatakis. Entanglement in a two-qubit Ising model under a site-dependent external magnetic field[J]. Physics Letters A,2004,333:438 - 445. 被引量:1
  • 5Koji Maruyama, Toshiaki Iitaka, Nori F. Enhancement of entanglement transfer in a spin chain by phase-shift control[ J ]. Physical Review A, 2007,75:012325. 被引量:1
  • 6Bose S. Quantum Communication through an Unmodulated Spin Chain [J]. Physical Review Letters,2003,91:207901. 被引量:1
  • 7Bose S. Quantum communication through a spin ring with twisted boundary conditions[ J]. Physical Review A ,2005,72:022345. 被引量:1
  • 8Zhou L, Song H S, Guo Y Q, et al. Enhanced thermal entanglement in an anisotropie Heisenberg XYZ chain [J]. Physical Review A, 2003, 68 : 024301. 被引量:1
  • 9Subrahmanyam V. Entanglement Dynamics and Quantum State Transport in Spin chains[ J]. Phys. Rev. A, 2004,69:034304. 被引量:1
  • 10Wootters W K. Entanglement of Formation of an Arbitrary State of Two Qubits [ J ]. Phys. Rev. Lett, 1998,80:2245. 被引量:1

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部