期刊文献+

纳米氧化物弥散强化铁素体合金的制备 被引量:4

Preparation of nano-oxide dispersively strengthened ferritic alloy
下载PDF
导出
摘要 以氢化钛、氢化钇、氧化铁和Fe-Cr-W气雾化预合金粉末为原料,通过球磨得到Fe-14Cr-3W-0.5Ti-0.31Y-0.22O合金粉末,经压制、烧结制备出纳米氧化物弥散强化铁素体合金。采用激光粒度仪、XRD、SEM和TEM表征粉末和预烧坯的显微结构。研究结果表明,粉末粒径随球磨时间增加呈先增大后下降,冷焊主导变形机制向破碎主导机制的转变点发生在球磨24h。XRD谱显示氢化物和氧化铁均已溶解于铁素体基体,48h球磨粉末没有发现第二相粒子的存在。球磨48h后过饱和的Y、Ti、O铁素体固溶体在随后的加热过程中析出尺寸为5nm左右的弥散相颗粒,这种第二相粒子非常稳定,即使1200℃保温8h仍不发生明显长大,起着强烈钉扎位错的作用。 By mechanical alloying raw powders of Ti,Y hydrides,iron oxide and gas-atomized Fe-Cr-W powder of the given composition Fe-14Cr-3W-0.5Ti-0.31Y-0.22O,nano-oxide dispersively strengthened ferritic alloys consolidated from pressing and pre-sintering of the as-milled powder were obtained. The morphology of the as-milled powders,the microstructure of the powders and pre-sintered compacts were investigated by means of laser particle sizing,X-ray diffractometry (XRD),scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the average diameter of the milled powder increases first then decreases with the increasing of milling time. The transition point of dominated powder deformation mechanism from cold welding to fracturing is at the milling of 24 h. XRD patterns show that both the hydrides and iron oxide have dissolved completely into ferritic matrix. No second phase particle has been found in the 48 h milled powder. On heat treatment,dispersed particles with an average size of 5 nm were precipitated from the Y,Ti,O supersaturated ferritic solid solution. These second particles which are ultra-stable even at the temperature of 1 200 ℃ holding for 8 h have been found strongly pinning the dislocation lines.
出处 《粉末冶金材料科学与工程》 EI 2010年第1期74-78,共5页 Materials Science and Engineering of Powder Metallurgy
基金 国家自然科学基金资助项目(50634060和50721003)
关键词 机械合金化 氧化物弥散强化 氧化铁 mechanical alloying oxide dispersive strengthen iron oxide
  • 相关文献

参考文献18

  • 1ODETTE G R, AJINGER M J WIRTH B D. Recent developments in irradiation-resistant steels [J]. Annu Rev Mater Res, 2008, 38: 471-503. 被引量:1
  • 2CAYRON C, RATH E, CHU I, et al. Microstructural evolution of Y2O3 and MgAl2O4 ODS EUROFER steels during their elaboration by mechanical milling and hot isostatic pressing [J]. Journal of Nuclear Materials, 2004, 335(1): 83-102. 被引量:1
  • 3KLUEH R L, MAZIASZ P J, KIM I S, et al. Tensile and creep properties of an oxide dispersion-strengthened ferritic steel [J]. Journal of Nuclear Materials, 2002, 307/311(1): 773-777. 被引量:1
  • 4MILLER M K, HOELZER D T, KENIK E A, et al. Stability of femtic MA/ODS alloys at high temperatures [J]. Intermetallics, 2005, 13(3/4): 387-392. 被引量:1
  • 5MILLER M K, RUSSELL K F, HOELZER D T. Characterization of precipitates in MA/ODS ferritic alloys [J]. Journal of Nuclear Materials, 2006, 351(1/3): 261-268. 被引量:1
  • 6FU C L, KRCMAR M, PAINTER G S, et al. Vacancy mechanism of high oxygen solubility and nucleation of stable oxygen-enriched clusters in Fe [J]. Physical Review Letters, 2007, 99(22): 225502/1-4. 被引量:1
  • 7JIANG Yong, SMITH J R, ODETTE G R. Formation of YoTi-O nanoclusters in nanostructured ferritic alloys: A first-principles study[J]. Physical Review B, 2009, 79(6): 064103. 被引量:1
  • 8张宁一,刘咏,刘峰,刘祖铭,方京华,刘东华,温玉仁.退火温度对Fe13CrWTiY高温合金显微组织与硬度的影响[J].粉末冶金材料科学与工程,2008,13(4):245-248. 被引量:5
  • 9BENJAMIN J S, VOLIN T E. Mechanism of mechanical alloying [J]. Metallurgical Transactions, 1974, 5(8): 1929-1934. 被引量:1
  • 10GILMAN P S, BENJAMIN J S. Mechanical alloying [J]. Annu Rev Mater Sci, 1983, 13: 279-300. 被引量:1

二级参考文献11

  • 1[3]ALEXANDER G B,ILER R K,WEST S F.Metal oxide-metal composition:US,2972529[P].1961-02-21. 被引量:1
  • 2[4]BENJAMIN J S.Dispersion strengthened superalloys by mechanical alloying (superalloys dispersion strengthening and age hardening by mechanical alloying)[J].Metal Trans,1970,1(1):2943-2915. 被引量:1
  • 3[5]KLUEH R L,SHINGLEDECKER J P,SWINDEMANV R W.Oxide dispersion-strengthened steels:A comparison of some commercial and experimental alloys[J].J Nucl Mater,2005,341(2/3):103-113. 被引量:1
  • 4[6]KLUEH R L,MAZIASZ P J,KIM I S.Tensile and creep properties of an oxide dispersion-strengthened ferritic steel[J].J Nucl Mater,2002,307/311(1):773-777. 被引量:1
  • 5[7]LARSON D J,MAZIASZ P J,KIM I S.Three-dimensional atom probe observation of nanoscale titanium-oxygen clustering in an oxide-dispersion-strengthened Fe-12Cr-3W-0.4Ti+Y2O3 ferritic alloy[J].Soripta Mater,2001,44(2):359-364. 被引量:1
  • 6[8]MILLER M K,RUSSELL K F,HOELZER D T.Characterization of precipitates in MA/ODS ferritic alloys[J].J Nucl Mater,2006,351(1/3):261-268. 被引量:1
  • 7[9]ZINKLE S J.Advanced materials for fusion technology[J].Fusion Engineering and Design,2005,74(1/4):31-40. 被引量:1
  • 8[10]SHIGEHARU UKAI,MASAYUKI FUJIWARA.Perspective of ODS alloys application in nuclear environments[J].J Nucl Mater,2002,307/311(1):749-757. 被引量:1
  • 9[11]EL-GENK M S,TOURNIER J M.SAIRS:Scalable AMTEC Integrated reactor space power system[J].J Nucl Mater,2004,45(1):25-69. 被引量:1
  • 10[13]CHOU T S.Recrystallisation behaviour and grain structure in mechanically alloyed oxide dispersion strengthened MA956 steel[J].Mater Sci Eng A,1997,223(1):78-90. 被引量:1

共引文献4

同被引文献60

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部