期刊文献+

基于QR分解的自适应差分滤波在SINS大方位失准角初始对准中的应用 被引量:6

A QR Factorization-based Adaptive Divided Difference Filter for Initial Alignment of Large Azimuth Misalignment of SINS
下载PDF
导出
摘要 针对差分滤波算法存在数值稳定性差及系统噪声统计特性不准确导致滤波性能下降的问题,提出一种改进的差分滤波算法。新算法将矩阵QR分解及Cholesky分解因数更新技术引入,并结合一种新的噪声估计方法及选择更新策略,有效地改善了系统噪声统计特性不准确带来的滤波性能下降问题,增强了传统差分滤波算法的数值稳定性。通过在捷联惯导系统大方位失准角初始对准中的应用,仿真结果表明了新算法的有效性和鲁棒性。 The divided difference filter for nonlinear state estimation suffers from numerical instability and the problem of degraded performance of the filter due to the incorrect statistics of the system noise, an adaptive difference filter is developed. The new algorithm, combining with the matrix QR decomposition, Cholesky decomposition factor updating, noise estimator and selective update strategy, efficiently im-proved the above problem. Test on the strapdown inertial navigation system (SINS) of initial alignment of large azimuth misalignment and simulation results show the efficiency and robustness of the proposed method.
出处 《宇航学报》 EI CAS CSCD 北大核心 2010年第2期509-513,共5页 Journal of Astronautics
基金 国家安全重大基础研究项目(973-61334)
关键词 差分滤波 QR分解 噪声估计器 大方位失准角 初始对准 Divided difference filter QR decomposition Noise estimator Large azimuth misalignment Initial alignment
  • 相关文献

参考文献10

  • 1万德钧,房建成著..惯性导航初始对准[M].南京:东南大学出版社,1998:189.
  • 2Dmitriyev S P, Stepenov O A, Shepel S V. Nonlinear filtering methods application in INS alignment[J]. IEEE Trans. on Aerospace and Electronic Systems, 1997, 33(1) : 260 - 271. 被引量:1
  • 3柴霖,袁建平,罗建军,方群,岳晓奎.非线性估计理论的最新进展[J].宇航学报,2005,26(3):380-384. 被引量:35
  • 4Van der Merwe R. Sigma-Point Kalman filters for probabilistic Inference in dynamic state-space models [ B ]. Oregon health & Science University ,2004 : 108 - 126. 被引量:1
  • 5LaViola J, Joseph Jr. A comparison of unscented and extended Kalman filtering for estimating quaternion motion [ C]. Proc of the American Control Conference, 2003 : 2435 - 2440. 被引量:1
  • 6SCHEI T S. A finite difference method for linearization in nonlinear estimation algorithms[J]. Automatica, 2003, 51(10) :2592 - 2601. 被引量:1
  • 7Press W H, Teukolsky S A, Vetterling W T, et al. Numerical recipes in C: The art of scientific computing. Cambridge University Press, 2007 : 100 - 105. 被引量:1
  • 8Sage A P, Husa G W. Adaptive filtering with unknown prior statistics [ C]. Proc of Joint Automatic Control Conference, 1969:760- 769. 被引量:1
  • 9赵瑞.捷联惯导系统自动标定和初始对准的理论和实验研究[D].清华大学博士学位论文,2001:62-92. 被引量:1
  • 10李涛..非线性滤波方法在导航系统中的应用研究[D].国防科学技术大学,2003:

二级参考文献15

  • 1张红梅,邓正隆,林玉荣.一种基于模型误差预测的UKF方法[J].航空学报,2004,25(6):598-601. 被引量:23
  • 2张友民,戴冠中,张洪才.卡尔曼滤波计算方法研究进展[J].控制理论与应用,1995,12(5):529-538. 被引量:45
  • 3Farina A, Ristic B, Benvenuti D. Tracking a ballistic target:comparison of several nonlinear filters[ J]. IEEE Trans on Aerospace and Electronic Systems, 2002, 38(3): 854 - 867. 被引量:1
  • 4Chai L, Yuan J P, Fang Q, et al. Neural network aided adaptive kalman filter for multi-sensors integrated navigation [ J ]. Lecture Notes in Computer Science, Springer-Verlag, 2004, 3174:381 -386. 被引量:1
  • 5Nφrgaard M, Poulsen N K, Ravn O. New developments in state estimation for nonlinear system [ J ]. Automatica, 2000, 36 ( 11 ):1627 - 1638. 被引量:1
  • 6Schei T S. A finite difference method for linearization in nonlinear eatimation algorithms[J]. Automatica, 1997, 33(11): 2051 - 2058. 被引量:1
  • 7Wan E A, Van der Merwe R. The unscented kalman filter for nonlinear estimation [ A ]. In: Proc of the Symposium 2000 on Adaptive System for Signal Processing, Communication and Control(AS-SPCC)[C], Lake Louise, Alberta, Canada, October 2000,IEEE. 被引量:1
  • 8Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-gaussian bayesian state estimation[A]. In: Proc of the Radar and Signal Processing[C], 1993:107 - 113. 被引量:1
  • 9Van der Merwe R, Doucet A, Freitas N, Wan E A. The Unscented Particle Filter[R]. Technical Report CUED/F- INFENG/TR 380,Cambridge University, 2000.. 被引量:1
  • 10Higuchi T. Monte carlo filter using the genetic algorithm operators[J]. Journal of Statistical Computation and Simulation, 1997, 59(1): 1-23. 被引量:1

共引文献34

同被引文献41

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部