期刊文献+

视线跟踪过程中变形瞳孔的定位 被引量:4

Distorted Pupil Localization in Eye Tracking
下载PDF
导出
摘要 在视线跟踪过程中,变形瞳孔的定位至关重要。针对眼部图像出现干扰情况下的变形瞳孔定位,该文提出了一种基于3点的随机采样一致性定位算法RANSAC_3,即利用随机采样到的2点(以及它们的梯度方向)和搜索获得的1个点来确定椭圆参数。由于该算法在确定参数时只需随机采样两个点,从而大大降低了采样到干扰点的几率,利用搜索到的第3点来决定是否对当前点进行参数计算,有效地解决了标准随机采样一致性定位算法中的无效采样和误差累积问题,提高了椭圆拟合效率和瞳孔定位精度。实验证明,该算法对变形瞳孔具有很好的定位效果,对光斑、睫毛、头发、眼镜框以及眼球运动模糊的引起的干扰具有较强的鲁棒性,并且定位速度快,可以达到实时要求。 It is important to locate the center of distorted pupil in eye tracking process. To tackle the issues induced by distortion and disturbance, a new Random Sample Consensus algorithm based on only 3 points, named RANSAC_3, is proposed in this paper. Ellipse model is adopted to match the distorted pupil, its parameters are calculated from the two randomly sampled points and one searched point. Only two randomly sampled points are needed to estimate the ellipse parameters in this method, so the probability of sampling disturbing points is reduced. The point derived by searching can be used to determine whether to calculate the ellipse parameters, so the efficiency of ellipse fitting and the accuracy of localization are improved. Experimental results show that the method has pretty good performance on the localization of distorted pupils, and is effective and robust to various disturbances, i.e. spectrum reflection, eyelash, hair, glasses and motion blur. Moreover, its high speed ensures that it can be used in a real-time eye tracking system.
出处 《电子与信息学报》 EI CSCD 北大核心 2010年第2期416-421,共6页 Journal of Electronics & Information Technology
基金 多媒体计算与通信教育部-微软重点实验室科研基金(07122808) 安徽省科技攻关项目(07010202046)资助课题
关键词 视线跟踪 变形瞳孔定位 随机采样一致性 最小二乘法 Eye tracking Distorted pupil localization Random sample consensus Least Square Method(LSM)
  • 相关文献

参考文献15

  • 1Jacob R J K and Karn K S. Eye tracking in human computer interaction and usability research: Ready to deliver the promises [J]. Computer Vision and Image Understanding, 2003, 24: 682-701. 被引量:1
  • 2Majaranta P and Raiha K. Twenty years of eye typing: systems and design issues [C]. Proceedings of the 2005 symposium on eye tracking research and applications, New Orleans, Louisiana, USA, March 2002: 15-22. 被引量:1
  • 3Kumar M, Garfinkel T, and Boneh D, et al.. Reducing shoulder-surfing by using gaze-based password entry [C]. Proceedings of the 3rd Symposium on Usable Privacy and Security, Pittsburgh, Pennsylvania, 2007(7): 13-19. 被引量:1
  • 4Daugman J. How iris recognition works [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14(1): 21-30. 被引量:1
  • 5Zhang Wencong, Li Bin Li, and Ye Xueyi, et al.. A Robust Algorithm for Iris Localization Based on Radial Symmetry [C]. Proceedings of the 2007 International Conference on Computational Intelligence and Security, Haerbin, 2007: 324-327. 被引量:1
  • 6Ma Li and Tan Tieniu, et al.. Personal identification based on iris texture analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(12): 1519-1533. 被引量:1
  • 7耿新,周志华,陈世福.基于混合投影函数的眼睛定位[J].软件学报,2003,14(8):1394-1400. 被引量:78
  • 8Takegami T, Gotoh T, and Ohyama G. An algorithm for model-based stable pupil detection for eye tracking system [J]. Systems and Computers in Japan, 2004, 35(13): 4, 21-31. 被引量:1
  • 9Lin Xiang, Craig J, and Dean S, et al.. Accurately measuring the size of the pupil of the eye [R]. Communication arid information technology research technical report, 2003, 127. 被引量:1
  • 10Li Dongheng, David W, and Derrick J P. Starburst: A hybrid algorithm for video-based eye tracking combining feature-based and model-based approaches [C]. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, June 2005: 79-87. 被引量:1

二级参考文献20

  • 1Brunelli R, Poggio T. Face recognition: Features versus templates. IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(10):1042-1052. 被引量:1
  • 2Yang MH, Kriegman DJ, Ahuja N. Detecting faces in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(1):34-58. 被引量:1
  • 3Bala J, DeJong K, Huang J, Vafaie H, Wechsler H. Visual routine for eye detection using hybrid genetic architectures. In: Backer E,Gelsema ES, eds. Proceedings of the 13th International Conference on Pattern Recognition. Los Alamitos: IEEE CS Press,1996,3:606-610. 被引量:1
  • 4Reinders MJT, Koch RWC, Gerbrands JJ. Locating facial features in image sequences using neural networks. In Essa I, ed.Proceedings of the 2nd International Conference on Automatic Face and Gesture Recognition Los Alamitos: IEEE CS Press, 1996.230--235. 被引量:1
  • 5Wu JX, Zhou ZH. Efficient face candidates selector for face detection. Pattern Recognition, 2003,36(5):1175-1186. 被引量:1
  • 6Kanade T. Picture processing by computer complex and recognition of human faces [Ph.D. Thesis]. Kyoto: Kyoto University, 1973. 被引量:1
  • 7Feng GC, Yuen PC. Variance projection function and its application to eye detection for human face recognition. Pattern Recognition Letters, 1998,19(9):899-906. 被引量:1
  • 8Feng GC, Yuen PC. Multi cues eye detection on gray intensity image. Pattern Recognition, 2001,34(5):1033-1046. 被引量:1
  • 9Alattar AM, Rajala SA. Facial features localization in front view head and shoulders images. In: Rodrignez J, ed. 1999 IEEE International Conference on Acoustics, Speech and Signal Processing (Icassp). Los Alamitos: IEEE CS Press, 1999,6:3557-3560. 被引量:1
  • 10The BioID Face Database, BioID-Technology Research, 2001. http://www.bioid.com. 被引量:1

共引文献327

同被引文献57

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部