期刊文献+

基于神经网络的混沌调频信号旁瓣抑制算法 被引量:2

Sidelobe Suppression Algorithm for Chaotic FM Signal Based on Neural Network
下载PDF
导出
摘要 为了提高雷达的抗干扰(ECCM)能力,采用混沌调频(FM)信号进行传输,但其回波经传统匹配滤波处理后,存在较高的随机分布的距离旁瓣,严重影响了雷达的性能。提出了一种以量子粒子群优化算法(QPSO)训练径向基函数(RBF)神经网络进行混沌FM信号旁瓣抑制的新方法。将RBF神经网络的参数组成一个多维向量,作为算法中的粒子进行进化,由此可在全局空间中搜索最优解。仿真结果表明,该方法计算简单,收敛速度快,并具有较好的数值稳定性,能很好的抑制距离旁瓣。 The chaotic frequency modulation (FM) signal is used to improve the electronic counter-countermeasure(ECCM) capabilities of radar. However, the sidelobe level of the signal after matching pro- cessing is very high, which greatly debases the radar' s performance. Based on the radial basis function (RBF) network, a novel range sidelobe processing technique was proposed, in which the quantum-behaved particle swarm optimization (QPSO) algorithm is applied to realize the optimization computing. A multidimensional vector composed of RBF network parameters is regarded as a particle to evolve, then, the feasible sampling space is searched for the global optima. The simulated results show that the algorithm has easier computation, more rapid convergence compared with traditional algorithms, and can also successfully suppress the sidelobe with good numerical stability.
出处 《兵工学报》 EI CAS CSCD 北大核心 2010年第2期177-183,共7页 Acta Armamentarii
基金 国防预研基金资助项目(9140A0120106BQ02)
关键词 雷达工程 混沌调频 神经网络 旁瓣抑制 radar engineering chaotic frequency modulation neural network sidelobe suppression
  • 相关文献

参考文献8

  • 1Axelsson S R J. Noise radar using random phase and frequency modulation[ J]. IEEE Trans on Geoscience and Remote Sensing, 2004, 42(11): 2370-2384. 被引量:1
  • 2Mikki S M, Kishk A A. Quantum particle swarm optimization for electromagnetics[J]. IEEE Trans on Antennas and Propagation, 2006, 54(10) : 2764 -2775. 被引量:1
  • 3Ding Kai, Yang Ruliang. Point target imaging simulation using chaotic signals[ C ]//2005 IEEE International Radar Conference, US: Arlington,2005 : 847 - 850:. 被引量:1
  • 4Khairnar D G, Merchant S N, Desai U B. Radial basis function neural network for pulse radar detection [ J ]. IET Radar Sonar Navig. , 2007, 1 (1) : 8 - 17. 被引量:1
  • 5Franken N, Engelbrecht A P. Particle swarm optimization approaches to coevolve strategies for the iterated prisoner's dilemma[ J]. IEEE Trans on Evolutionary Computation, 2005, 9 (6) : 562 - 579. 被引量:1
  • 6Khodier M M, Christodoulou C G. Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization [ J]. IEEE Trans on Antennas and Propagation, 2005, 53(8) : 2674 -2679. 被引量:1
  • 7Sun J, Feng B, Xu W B. Particle swarm optimization with particles having quantum behavior[ C ]//Proc of 2004 Congress on Evolutionary Computation. Washington: IEEE Press, 2004:325 - 331. 被引量:1
  • 8Zhao Z S, Hou Z G, Xu D, et al. An evolutionary RBF networks based on RPCL and its application in fault diagnosis [ C ]//2009 IEEE International Conference on Machine Learning and Cybernetics, US : Piscataway, 2009 : 1005 - 1009. 被引量:1

同被引文献19

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部