期刊文献+

倒谱域特征分量置信度分析及说话人识别应用 被引量:4

Confidence analysis of cepstral feature and application to speaker recognition
下载PDF
导出
摘要 缺失数据理论的置信度分析用于说话人识别时,使用的是滤波器组语音特征,虽然系统的鲁棒性可以提高,但整体的误识率依然很高。为了进一步降低系统的误识率,本文在滤波器组语音特征分量置信度的基础上,提出了一种用于计算倒谱域特征MFCC各维分量置信度的方法CBTM,该方法通过一个置信度变换矩阵,估算出经过Mel谱减法处理后的MFCC各维分量的置信度,在此基础上通过对GMM模型的方差加权来减少置信度小的特征分量对输出概率的影响,以此来提高系统的鲁棒性。在基于SUDA2002语料库的说话人辨认实验中,上述方法对NoiseX-92噪声库中的white、pink、factory1噪声表现出了比传统方法更低的误识率,说明了这种方法的有效性。 We used the filter bank as feature parameters when applied the confidence analysis to speaker recognition, it can improve the robustness, but the error rate was still very high, In order to further reduce the error rate of speaker recognition system, we proposed a new method called CBTM to get the confidence of each cepstral feature MFCC component based on the confidence of the filter bank. The CBTM evaluated the confidence of all MFCC components disposed by the Mel spectral subtraction through a confidence transform matrix, and reduced the impact of component with low confidence on the output probability by weighting the GMM variance to improve the robustness. The speaker identification experiments on Chinese speech corpus SUDA2002 show that the performance of the proposed method is better than traditional methods in the presence of white ,pink ,factoryl noise of NoiseX-92 database.
作者 薛峰 俞一彪
出处 《信号处理》 CSCD 北大核心 2010年第1期127-131,共5页 Journal of Signal Processing
关键词 说话人识别 鲁棒性 置信度 CBTM Speaker Recognition Robust Confidence CBTM
  • 相关文献

参考文献12

  • 1You Kuo-hwei, Wang Hsiao-chuan. Robust features for noisy speech recognition based on temporal trajectory filtering of short-time autocorrelation sequences. Speech Communication, 1999,28 : 13-24. 被引量:1
  • 2Hsieh C T, Lai E, Wang Y C. Robust speech features based on wavelet transform with application to speaker identification. IEEE Proc.-Vis. Image Signal Process, 2002, 149 (2) : 108-144. 被引量:1
  • 3芮贤义,俞一彪.基于小波变换的鲁棒型特征提取及说话人识别[J].电路与系统学报,2005,10(5):129-132. 被引量:7
  • 4Gales M J F,Young S J. Robust Continuous Speech Recognition Using Parallel Model Combination. IEEE Trans Speech and Audio Proc,1996,4:352-359. 被引量:1
  • 5徐义芳,张金杰,姚开盛,曹志刚,王勇前.语音增强用于抗噪声语音识别[J].清华大学学报(自然科学版),2001,41(1):41-44. 被引量:15
  • 6Barker J P, Josifovski L, Cooke M P. Green P. Soft decisions in missing data techniques for robust automatic speech recognition. Proc. ICSLP' 00 ,2000 ,1:373-376. 被引量:1
  • 7Raj B, Stern R M, Missing-feature approaches in speech recognition. IEEE Signal Processing Magazine, 2005, 5 :101-116. 被引量:1
  • 8Van Seqbroeck M, Van hamme H, Robust speech recognition using missing data techniques in the prospect domain and fuzzy masks. IEEE International Conference on Acoustics,Speech and Signal Processing,2008,1:4393-4396. 被引量:1
  • 9Choi,E. H. C. , A generalized framework for compensation of Mel-fiher bank outputs in feature extraction for robust ASR. In : Proc. Eurospeech, 2005 : 933- 936. 被引量:1
  • 10Davis S B, Mermelstein P. Comparison of Parametric Representations for Monosyllabic Word Recognition in Continuously Spoken Sentences. IEEE Transactions on Acoustic, Speech, and Signal Processing, 1980,28 ( 4 ) : 357-366. 被引量:1

二级参考文献19

共引文献31

同被引文献47

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部