期刊文献+

Bayes法前列腺癌多肿瘤标志物诊断模式建立及临床意义 被引量:2

Establishment of diagnostic model in prostate cancer with multiple tumor marker by Bayesian methods and its clinical significance
下载PDF
导出
摘要 目的分析12项肿瘤标志物在前列腺癌中的表达,进而运用Bayes法(贝叶期法)建立多肿瘤标志物前列腺癌判别函数,探讨Bayes法在前列腺癌诊断中的作用和临床意义。方法用蛋白芯片法检测2177例恶性肿瘤患者(其中21例前列腺癌)和2111例正常及良性病变者的12项常见肿瘤标志物,应用Bayes法建立肿瘤三级判别诊断函数。结果(1)一级判别函数对前列腺癌诊断准确率为83.97%,灵敏度为71.28%,特异度为82.11%。二级判别函数对前列腺癌诊断诊断的准确率为96.87%,灵敏度为93.33%,特异度为100%。(2)三级诊断判别函数对前列腺癌诊断的准确率为81.82%,部分前列腺癌被误诊为食管癌。(3)成功建立了新的多肿瘤标志物流程诊断软件。结论基于Bayes法建立诊断判别函数能显著提高前列腺癌诊断,具有较高的临床应用价值。 Objective To analyze the expression of C-12 multiple tumor marker in prostate cancer,futhermore,to establish the diagnostic function by Bayesian methods and to evaluate the function of bayesian methods and clinical values in diagnosis of prostate cancer. Methods 12 tumor markers were detected by protein chip technology in 2 177 cases of malignant tumors (prostate cancer 21 cases ) and 2 111 cases in control group. To retrospectively study their clinical information, furthermore to establish third grades diagnostic function by Bayesian method. Results (1) The accuracy rate, sensitivity and specificity were 83. 97% ,71. 28% and 82.11% by the first grade diagnostic function and 96.87 %, 93.33 % and 100% by the second diagnostic function, respectively. (2) The accuracy rate was 81.82 % by the third grade diagnostic function. Part of prostate cancer was diagnosed esophageal carcinoma. (3)The multiple tumor marker analysis system software was developed successfully. Conclusion The diagnostic function shows great potential for the early detection of prostate cancer. The function is helpful for clinical use and points out new diagnostic trend for prostate cancer.
出处 《重庆医学》 CAS CSCD 北大核心 2010年第5期527-529,532,共4页 Chongqing medicine
关键词 多肿瘤标志物 前列腺癌 贝叶斯法 软件 诊断函数 multiple tumor marker prostate cancer Bayesian methods software diagnostic function
  • 相关文献

参考文献10

  • 1Ohori M. Biomarkers for prostate cancer in predicting diagnosis,staging and prognosis[J]. Gan To Kagaku Ryoho,2009,36(1):6. 被引量:1
  • 2Montomoli C, Nichelatti M. Bayesian statistics in medicine -- part Ⅱ: main applications and inference[J]. G Ital Nefrol, 2008,25 (4):422. 被引量:1
  • 3Verzilli C,Shah T,Casas JP, et al. Bayesian meta-analysis of genetic association studies with different sets of markers[J]. Am J Hum Genet,2008,82(4):859. 被引量:1
  • 4Wu D,Rosner GL,Broemeling LD. Bayesian inference for the lead time in periodic cancer screening[J]. Biometrics,2007,63(3) : 873. 被引量:1
  • 5仲召阳,王东,李梦侠,彭斌,李增鹏,曹晓静.基于Bayes法的C-12蛋白芯片联合检测判别函数的建立及临床意义分析[J].解放军医学杂志,2009,34(1):34-37. 被引量:5
  • 6Meany DL, Zhang Z,Sokoll L J, et al. Glycoproteomics for prostate cancer detection: changes in serum PSA glyeosylation patterns[J]. J Proteome Res, 2009,8 (2) : 613. 被引量:1
  • 7Margreiter M, Stangelberger A, Valimberti E, et al. Biomarkers for early prostate cancer detection[J]. Minerva Urol Nefrol, 2008,60 (1) : 51. 被引量:1
  • 8Botchorishvili G, Matikainen MP, Lilja H. Early prostatespecific antigen changes and the diagnosis and prognosis of prostate cancer[J]. Curt Opin Urol,2009,19(3) :221. 被引量:1
  • 9Sehostak M, Schwall GP,Poznanovie S, et al. Annexin A3 in urine: a highly specific noninvasive marker for prostate cancer early detection[J]. J Urol, 2009,181 (1) : 343. 被引量:1
  • 10Dully MJ, Napieralski R, Martens JW, et al. Methylated genes as new cancer biomarkers[J]. Eur J Cancer,2009, 45(3) :335. 被引量:1

二级参考文献12

  • 1杨雪琴,王东,李增鹏,王阁,杨镇洲,杨志祥,杨玉磬,蒋耀光.多肿瘤标志物蛋白芯片监测肺癌复发进展及转移的临床意义[J].中国肺癌杂志,2007,10(4):296-300. 被引量:5
  • 2董学君,陈建军,郑专,王贵珍,单水阳,王伟,傅燕萍.多肿瘤指标联合诊断肝癌的函数建立和应用[J].检验医学,2006,21(3):255-258. 被引量:5
  • 3Weinberger SR, Dalmasso EA, Fung ET. Current achievements using protein chip array technology. Curt Opin Chem Biol, 2002, 6 (1):86 被引量:1
  • 4Sun Z, Fu X, Zhang L, et al. A protein chip system for parallel analysis of multi-tumor markers and its application in cancer detection. Anticancer Res, 2004, 24 (2C) : 1159 被引量:1
  • 5Montomoli C, Nichelatti M. Bayesian statistics in medicine - part Ⅱ: main applications and inference G Ital Nefrol, 2008, 25(4) :422 被引量:1
  • 6Sreekumar A, Chinnaiyan AM. Using protein rnicroarrays to study cancer. Biotechniques, 2002, (Suppl) :46 被引量:1
  • 7Mrochem J, Sodowski K, Deja R, et al. Evaluation of selected serum protein markers as early detectors of ovarian cancer. Ginekol Pol, 2008, 79(4) :271 被引量:1
  • 8Visintin I, Feng ZD, I.ongton G, et al. Diagnostic markers for early detection of ovarian cancer. Clin Cancer Res, 2008, 14(4) :1065 被引量:1
  • 9Verzilli C, Shah T, Casas JP, et al. Bayesian meta-analysis of genetic association studies with different sets of markers. Am J Hum Genet, 2008, 82(4) :859 被引量:1
  • 10Nichelatti M, Montomoli C. Bayesian statistics in medicine. Part Ⅰ: the basic tools. G Ital Nefrol, 2008, 25(3):342 被引量:1

共引文献4

同被引文献20

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部