期刊文献+

基于分支特征点的景象匹配算法 被引量:1

Scene Matching Algorithm Based on Bifurcation Extraction
下载PDF
导出
摘要 由于传统Hausdorff距离算法对减少非零均值高斯噪声的干扰不明显,且匹配精度不能满足惯导的要求,因而提出了一种改进的算法分支点的加权Hausdorff距离(Weighted Hausdorff Distance,WHD)算法,并给出了权值的求取公式。方法能有效匹配被非高斯噪声污染的图像,提高景象匹配的精度和速度,增强算法的鲁棒性。并对提出的WHD算法与部分的平均距离算法(PMHD)分别作仿真实验进行比较,证明了前者算法的实用性和有效性。 Due to reducing disturbing of nonzero Gauss noise is not evident with Traditional Hausdorff distance, and matching precision can not be applied to the inertial navigation, an improved approach weighted Hausdorff distance algorithm based on characteristic extraction is proposed, and the weighted formula is given , This approach can effectively match image which is stained by non - gauss noise, and enhance precision and speed of scene matching and robust of algorithm. Experimental results show the efficiency and practicability of this algorithm.
出处 《计算机仿真》 CSCD 北大核心 2010年第2期88-91,共4页 Computer Simulation
关键词 豪斯多夫距离 分支点提取 景象匹配 加权豪斯多夫距离 Hausdorff distance Bifurcation extraction Image matching Weighted Hausdorff distance
  • 相关文献

参考文献7

  • 1黄贤武,苏鹏程,柏培权.基于方向滤波分割的指纹自动识别系统算法[J].中国图象图形学报(A辑),2002,7(8):829-834. 被引量:47
  • 2张敏.二值图像中一种改进的细化算法[J].现代电子技术,2005,28(19):96-98. 被引量:7
  • 3Kwon Oh Kyu, Sim Dong Gyu, Park Rae Hong. Robust Hausdorff distance matching algorithms using Pyramidal structures [ J ]. Pattern Recognition, 2001,3g (7) :2005 - 2013. 被引量:1
  • 4M P Dubuisson, A K Jain. A modified Hausdorff distance for object matching[ C]. Proceedings of International Conference on Pattern Recognition 1994. 566 - 568. 被引量:1
  • 5赵峰伟.景象匹配算法、性能评估及其应用[D].国防科学技术大学硕士论文,2002. 被引量:1
  • 6Daniel P Huttenlocher, Gregory Klandener Man and William Rucklidge. Comparing images using the Hausdorff distanee[J]. IEEE. Trans. Patt. Anal Machinelntell, 1993,13 (9) :850 - 863. 被引量:1
  • 7D G Sim, O K Kwon, R H Park. Object matching algorithm using robust Hausdorff distance measures[J]. IEEE Transactions on Image Processing, 1999, 8 (3) :425 - 429. 被引量:1

二级参考文献4

共引文献52

同被引文献15

  • 1Qiao Y J, Xie X F, Shi L, et al. The application of spatial scene matching based on SURF in cruise missile terminal guidance[C]// Proc. of the IEEE International Conference on Measuring Technol- ogy and Mechatronics Automation,2010 : 790 - 793. 被引量:1
  • 2Jing L, Nigel M. A comprehensive review of current local fea- tures for computer vision[J]. Neurocomputing Archive,2008, 71(10/12):1771- 1787. 被引量:1
  • 3Lowe D G. Distinctive image features from scale-invarianl key- points[J], International Journal of Computer Vision, 2004, 2(60) :91 -110. 被引量:1
  • 4Morel J M, Yu G. ASIFT: a new framework for fully affine invariant image comparison[J]. Slam Journal on Imaging Sci- ences,2009,2(2):438- 469. 被引量:1
  • 5Bay H, Tuvtellars T, Gool L V. SURF: speeded up robust fea- tures[C]// Proc. of the 9th European Conference on Computer Vision ,2006,3951(1) :404 - 417. 被引量:1
  • 6Tolak E, Lepetit V, Fua P. A fast local descriptor for dense matching[C]// Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2008: 1 - 8. 被引量:1
  • 7Zhao G Q, Chen L, Chen G C. A speeded- up local descriptor for dense stereo matching[C]//Proc, of the 16th IEEE Interna- tional Conference on Image Processintg, 2009 : 2101 - 2104. 被引量:1
  • 8BayH, Fasel B, Gool L V. Interactive museum guide: fast and robust recognition of museum objects[C]//Proc, of the 1st International Workshop on Mobile Vision ,2006. 被引量:1
  • 9Sato Y, Sugimura T, Noda H. Integral -image based implementation of U-SURF algorithm for embedded super parallel processor[C]// Proc. of the International Sympmium on Intelligent Signal Process ing and Communication Systems,2009:485 -488. 被引量:1
  • 10Brown M, Lowe D. Invariant features from interest point groups[C]//Proc, of the 13th British Machine Vision Conference , 2002:656 - 665. 被引量:1

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部