期刊文献+

Schrdinger算子的Riesz平均不等式 被引量:1

Riesz means inequalities of Schrdinger operators
下载PDF
导出
摘要 研究定义在有界区域上的Schrdinger算子的离散谱,借助有关特征值估计的迹公式,采用一种新的方法证明了特征值Riesz平均的微分不等式和差分不等式,进而得到有关Riesz平均的单调性. The discrete spectrum of Schr6dinger operators defined on a bounded domain were discussed, and using trace identity of eigenvalue estimates, differential inequalities and difference inequalities for Riesz means of Schrodinger operators were derived. In this meaning, the monotony principles about Riesz means were obtained.
作者 赵琳 贾高
出处 《上海理工大学学报》 CAS 北大核心 2010年第1期9-12,共4页 Journal of University of Shanghai For Science and Technology
基金 上海市教育委员会科研创新基金资助项目(08YZ94)
关键词 RIESZ平均 特征值 微分不等式 差分不等式 单调性 Riesz means eigenvalue differential inequality difference inequality monotony principle
  • 相关文献

参考文献8

  • 1HARRELE M, STUBBE J. On trace identities and universal eigenvalue estimate for some partial differential operators[J]. Trans. Amer. Math. Soc., 1997, 349: 1 797 - 1 809. 被引量:1
  • 2匡继昌.常用不等式[M].济南:山东科学技术出版社,2003.. 被引量:36
  • 3ALLEGRETOO W. Lower bounds on the number of points in the lower spectrum of elliptic operators[J]. Can. J. Math., 1979,31 : 419 - 426. 被引量:1
  • 4HARREL E M,HERMI L. On riesz means of eigenvalues [J/OL]. [2008- 11 - 01]. http://arxiv. org/ps_cache/ arxiv/pdf/0712.4088v1. pdf. 被引量:1
  • 5AIZENMAN M,LIEB E H. On semi-classical bounds for eigenvalues of Schrodinger operators[J]. Phys. Lett., 1978,66:427- 429. 被引量:1
  • 6EASTHAM M S P, KALF H. SchrSdinger-Type operators with continuous spectra [M]. Boston: Pitman Advanced Pub, 1982. 被引量:1
  • 7PETER L I, YAU Shingtang. On the Schrodinger equation and eigenvalue problem [J]. Commun. Math. Phys., 1983,88:309 - 318. 被引量:1
  • 8HARREL E M, HERMI L. Differential inequalities for Riesz means and Weyl-type bounds for eigenvalues[J]. Journal of Functional Analysis, 2008, 254:3 173 - 3 191. 被引量:1

共引文献35

同被引文献18

  • 1葛永斌,田振夫,吴文权.高维热传导方程的高精度交替方向隐式方法[J].上海理工大学学报,2007,29(1):55-58. 被引量:12
  • 2DHAR A,DHAR D.Absence of local thermal equilibrium in two models of heat conduction[J].Phys Rev Lett,1999,82:480-483. 被引量:1
  • 3DHAR A,SHASTRY B S.Quantum transport using the ford-kac-mazur formalism[J].Phys Rev B,2003,67(195405):1-10. 被引量:1
  • 4AGRAWAL S,RAGHUVEER M S,RAMPRASAD R,et al.Multishell carrier transport in multiwalled carbon nanotubes[J].Nanotechnology IEEE,2007,6(6):722-726. 被引量:1
  • 5AGGARWAL M,HUSAIN M,KHAN S,et al.Electrical conduction mechanism in Fe70Pd30 catalyzed multi-walled carbon nanotubes[J].Journal of nanoparticle research,2007,9(6):1 047-1055. 被引量:1
  • 6XU W G,ZHANG H T,YANG Z M,et al.The effective thermal conductivity of three-dimensional recticulated foam materials[J].Journal of Porous Materials,2009,16(1):65-71. 被引量:1
  • 7CASATI G,FORD J,VIVALDI F,et al.One-dimensional classical many-body system having a normal thermal conductivity[J].Phys Rev Lett,1984,52:1 861-1864. 被引量:1
  • 8ALONSON D,ARTUSO R,CASATI G,et al.Heat conductivity and dynamical instability[J].Phys Rev Lett,1999,82:1 859-1862. 被引量:1
  • 9BONETTO F,LEBOWITZ J L,LUKKARINEN J,et al.Heat conduction and entropy production in anharmonic crystals with self-consistent stochastic reservoirs[J].Journal og Statistical Phys,2009,134:1 097-1119. 被引量:1
  • 10FLACH S,GORBACH A V.Discrete breathers-advances in theory and applications[J].Physics Reports,2008,467:1-116. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部