期刊文献+

高雷诺数下的翼型绕流LBM数值模拟 被引量:4

Simulation of High Reynolds Number Flow Around Airfoil by Lattice Boltzmann Method
原文传递
导出
摘要 采用格子Boltzmann方法(LBM)的二维9速度(D2Q9)模型和贴体网格,通过引入非均匀网格插值方法和非平衡态外推边界处理,分别结合Baldwin-Lomax(B-L)湍流模型和Spalart-Allmaras(S-A)湍流模型,对高雷诺数Re≥5×105下的NACA0012翼型绕流进行了数值模拟和对比研究,两者的结果与CFL3D的结果和实验结果均吻合的很好,相比之下,采用S-A模型能更好地预测失速迎角,其处理分离流动的能力要强于B-L模型。改进后的LBM适用于非均匀贴体网格,曲边边界,计算简单,并可应用于更复杂的高雷诺数流动中。 Simulation of a high Reynolds number flow (Re≥5×105) around an airfoil (NACA0012) using the Lattice Boltzmann method (LBM) is performed in this article. The present method chooses a two-dimensional 9-velocity (D2Q9) model and uses a non-uniform body-fitted mesh. Originally,the LBM is an incompressible flow solver in orthogonal coordinates. In order to resolve the boundary layer of the airfoil accurately,the algorithm is extended to generalized coordinates. Meanwhile,a non-equilibrium extrapolation scheme for the wall boundary condition is adopted. In order to calculate high Reynolds number flows,the present method is combined with the Baldwin-Lomax (B-L) turbulence model and the Spalart-Allmaras (S-A) turbulence model respectively. The results agrees well with the CFL3D solver results and experimental data. Compared with the B-L model,the S-A model can give more accurate prediction of the static stall angle and show better ability of separated flow simulation. The present method is suitable for problems of non-uniform body-fitted mesh and curvilinear boundary,and its calculation is simple. It can be applied to more complex high Reynolds number flows.
出处 《航空学报》 EI CAS CSCD 北大核心 2010年第2期238-243,共6页 Acta Aeronautica et Astronautica Sinica
基金 航空科学基金(20061453020) 西北工业大学基础科学研究基金
关键词 格子BOLTZMANN方法 高雷诺数流动 非均匀 贴体网格 翼型 lattice Boltzmann method high Reynolds number flow non-uniform body-fitted mesh airfoil
  • 相关文献

参考文献16

  • 1Qian Y H, d' Humieres D, Lallemand P. Lattice BGK models for Navier-Stokes equation [J]. Europhys. Lett, 1992, 17(6): 479-484. 被引量:1
  • 2Imamura T, Suzuki K, Nakamura T, et al. Flow simulation around an airfoil using lattice Boltzmann method on generalized coordinates [R]. AIAA-2004-244, 2004. 被引量:1
  • 3张勇,钟诚文.基于Lattice Boltzmann方法的翼型绕流数值模拟[J].航空计算技术,2006,36(3):111-114. 被引量:1
  • 4Fillipova O, Succi S, Mazzocco F, et al. Multiscale lattice Boltzmann schemes with turbulence modeling[J]. Journal of Computational Physics, 2001, 170(2) : 812- 829. 被引量:1
  • 5Lin C L, Lai Y G. Lattice Boltzmann method on compositegrids [J]. Physical Review E, 2000, 62(2): 2219- 2225. 被引量:1
  • 6He X Y, Doolen G. Lattice Boltzmann method on curvilinear coordinate system: flow around a circular cylinder [J]. Journal of Computational Physics, 1997, 134(2): 306- 315. 被引量:1
  • 7Lee T, Lin C L. A characteristic Gale-rkin method for discrete Boltzmann equation [J]. Journal of Computational Physics, 2001, 171(1): 336 -356. 被引量:1
  • 8He X Y, Luo I. S. Lattice Boltzmann model for the incompressible Navier-Stokes equation [J]. Journal of Statistical Physics, 1997, 88; 927 -944. 被引量:1
  • 9Imamura T, Suzuki K, Nakamura T, et al. Acceleration of steady-state lattice Boltzmann simulations on non-uniform grid using local time step method [J]. Journal of Computational Physics, 2005, 202(2):645 -663. 被引量:1
  • 10Anderson J D, Jr. Computational fluid dynamics: the basics with applications [M]. Beijing: Tsinghua University Press, 2002:302 -303. 被引量:1

二级参考文献7

  • 1Taro Imamura,Kojiro Suzuki,Takashi Nakamura,Masahiro Yoshida.Flow simulation around an airfoil using Lattice Boltzmann method on generalized coordinates[R].AIAA 2004-244,5-8 Jan.2004,Reno,Nevada. 被引量:1
  • 2O Fillipova,S Succi,F Mazzocco,C Arrighetti,G Bella,and D Hanel.Multiscale Lattice Boltzmann Schemes with Turbulence Modeling[J].J.Comput.Phys.2001,170,812. 被引量:1
  • 3Ching-Long Lin and Yong G Lai.Lattice Boltzmann method on composite grids[J].Phys.Rev.2000,62(2) 2219. 被引量:1
  • 4X He and G Doolen.Lattice Boltzmann Method on Curvilinear Coordinate System:Flow around a Circular Cylinder[J].J.Comput.Phys.1997,134,306. 被引量:1
  • 5Taehun Lee and Ching-Long Lin,A Characteristic Galerkin Method for Discrete Boltzmann Equation[J].J.Comput.Phys.2001,171,336. 被引量:1
  • 6Xiaoyi He and Li-Shi Luo,Lattice Boltzmann Model for the Incompressible Navier-Stokes Equation[J].Journal of Statistical Physics,1997,88:3/4. 被引量:1
  • 7Taro Imamura,Kojiro Suzuki,Acceleration of steady-state lattice Boltzmann simulations on non-uniform mesh using local time step method[J].J.Comput.Phys.2005,202:645-663. 被引量:1

同被引文献24

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部