期刊文献+

模型多参数灵敏度与不确定性分析 被引量:28

A multi-parameter sensitivity and uncertainty analysis method to evaluate relative importance of parameters and model performance
原文传递
导出
摘要 以潮白河为研究区域,探讨了与模型参数及模型模拟性能有关的多参数灵敏度及不确定性分析方法(Multi-Parameter Sensitivity and Uncertainty Analysis,MPSUA)。基于MonteCarlo模拟的多参数灵敏度分析,可以评价模型中多个参数的相对重要性。GLUE不确定性分析则能对模型性能进行量化评估。实例研究表明,通过MPSUA方法,可以减少优化参数的个数。而且,在没有对模型进行参数优化之前,基于MPSUA就可以确定模型的模拟精度。例如同样的模型在潮河可以获得比在白河更高的模拟精度。这种同一模型在不同流域所体现的差异性,一方面是源于模型结构本身的不完善,另一方面则与用于建模的数据误差有关。SCE-UA参数优化结果与MPSUA结果几乎一致,说明本文的参数灵敏度与模型总体性能评估方法比较合理。 A Multi-Parameter Sensitivity and Uncertainty Analysis(MPSUA)method is developed to evaluate the relative importance of parameters and model performance.The idea of MPSUA is to couple the Generalized Likelihood Uncertainty Estimation(GLUE)with the Multi-Parameter Sensitivity Analysis(MPSA)based on Monte Carlo simulation.The implementation of MPSA includes the following steps:(1)Running the model using randomly generated parameter sets;(2)Computing the objective function values,which are defined as the sum of squared errors between 'observed' and simulated values.The observed values are the output from model simulations using the median of the characteristic range for each parameter.(3)Identifying the 'acceptable' and 'unacceptable' parameter sets by comparing the objective function values to a given criterion,e.g.,the 50% division of all sorted objective functions.The objective function value which is less than the criterion is classified as 'acceptable',otherwise it is classified as 'unacceptable'.(4)Measuring the separating degree between two cumulative distribution curves for "acceptable" and "unacceptable" parameters.Larger discrepancy means higher sensitivity.The case study in the Chaobai River Basin of North China showed that the model performance can be evaluated based on MPSUA,even though the optimum parameter values were unknown.For example,the same model could reach a higher modeling precision for the Chaohe River Basin than that for the Baihe River Basin.Such a difference in model performance is likely caused by both the uncertainty from model structure and the uncertainty from input data.The consistency between parameter optimization by SCE-UA algorithm and MPSUA also illustrated the rationality of the methodology applied in this paper.Further studies can take into account multiple objectives into the MSPUA.
出处 《地理研究》 CSCD 北大核心 2010年第2期263-270,共8页 Geographical Research
基金 国家自然科学基金重点项目(40730632) 中国科学院院长奖获得者科研启动专项资金
关键词 模型性能 参数 灵敏度分析 SCE-UA算法 潮白河流域 model performance parameter sensitivity analysis SCE-UA algorithm Chaohe and Baihe river basins in North China
  • 相关文献

参考文献17

  • 1Gupta Hoshin V, Sorooshian Soroosh, Hogue Terri S,et al. Advances in automatic calibration of watershed Mod- els. In.. Duan Q. et al. (Eds), Calibration of Watershed Models, Water Sci. and Appl. 6, AGU, Washington, DC, 2003, 9-28. 被引量:1
  • 2Schultz G A, Engman E T. (Eds.) Remote Sensing in Hydrology and Water Management. Springer Verlag Berlin Heidelberg, Germany, 2000. 被引量:1
  • 3Rozos Evangelos, Efstratiadis Andreas, Nalbantis Ioannis,et al. Calibration of a semi-distributed model for conjunctive simulation of surface and groundwater flows. Hydrological Sciences Journal, 2004, 49(5) : 819-842. 被引量:1
  • 4Duan Q Y. Global optimization for watershed model calibration. In: Duan Q. et al. (Eds), Calibration of Watershed Models, Water Sci. and Appl. 6, AGU, Washington, DC;, 2003: 89-102. 被引量:1
  • 5Duan Q, Sorooshian S, Gupta V K. Effective and Efficient Global Optimization for Conceptual Rainfall-Runoff Models. WaterResour. Res., 1992, 28(4): 1015-1031. 被引量:1
  • 6Duan Q, Sorooshian S,Gupta V K. Optimal Use of the SCE UA Global Optimization Method for Calibrating Wa- tershed Models. J. of Hydrol. , 1994, 158: 265-284. 被引量:1
  • 7Duan Q, Gupta V K,Sorooshian S. A Shuffled Complex Evolution Approach for Effective and Efficient Global Optimization. J. Optim. Theo. and Its Appl., 1993, 76(3): 501-521. 被引量:1
  • 8McCuen Richard H. Modeling hydrologic change: statistical methods. Lewis publishers, 2003, 333-365,. 被引量:1
  • 9White K L, Chaubey I. Sensitivity analysis, calibration, and validations for a multisite and multivariable SWAT model. Journal of the American Water Resources Association, 2005, 41:1077-1089. 被引量:1
  • 10Lenhart T, Eekhardt K, Fohrer N,et al. Comparison of two different approaches of sensitivity analysis. Physics and Chemistry of the Earth, 2002, 27:645-654. 被引量:1

二级参考文献30

  • 1邱扬,傅伯杰,王军,陈利顶.黄土丘陵小流域土壤水分空间预测的统计模型[J].地理研究,2001,20(6):739-751. 被引量:18
  • 2谢平,梁瑞驹.扩散模拟型流域地貌汇流模型[J].地理学报,1997,52(4):316-323. 被引量:13
  • 3庄一鸰 林三益.水文预报[M].北京:水利电力出版社,1986.11-21. 被引量:6
  • 4Yang Dawen, Herath Srikantha, Musiake Katumi. Comparision of different distributed hydrological models for characterization of catchment spatial variability. Hydrological Progresses, 2000,14 : 403 - 416. 被引量:1
  • 5Arnold J G, Williams J R, Srinivasan R,et al. Model theory of SWAT. USDA, Agricultural Research Service Grassland, Soil and Water Research Laboratory, 1997. 被引量:1
  • 6Jayawardena A W. Daily river discharge prediction using GCM generated atmospheric data. IAHS Publ no. 270,2001. 159-165. 被引量:1
  • 7Yutaka Ichikawa, Yasuto Tachikawa, Michiharu Shiiba. Lumping slope runoff model using digital elevation model and steady state assumption. Water 99 Joint Congress-Brisbane, Australia 6-8 July 1999. 113-118. 被引量:1
  • 8Xia J. A system approach to real time hydrological forecasts in watersheds. Water International, 2002,27(1) :87-97. 被引量:1
  • 9Xia Jun, Wang Gangsheng, Tan Ge. A distributed hydrological model applied to Heihe mountainous basin in western China. IAHS Publicationno. 282, 2003.268-274. 被引量:1
  • 10Thompson SA. Hydrology for water management. Rotterdam: A A Balkema, 1999.212-216, 272-275. 被引量:1

共引文献33

同被引文献318

引证文献28

二级引证文献221

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部