期刊文献+

关于半鞅的可料表示性 被引量:1

On the Semi-martingale Predictable Representation
下载PDF
导出
摘要 利用鞅空间H1的泛函表示定理、泛函分析中的Hahn-Banach定理、半鞅向量随机积分的Girsanov定理,获得了半鞅可料表示性的特征。由于使用的是半鞅的向量随机积分,它推广了经典的结论。 The characteristics for semi-martingale predictable representation are obtained (theorem2.2), which is derived from the functional representation theorem in martingale space, the Hahn-Banach theorem in functional analysis, and the Girsanov theorem for the semi-martingale vector stochastic integral. In light of the semi-martingale vector stochastic integral used, this method is a generalization of the classical result.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2010年第1期159-162,共4页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(60673090)
关键词 半鞅 H1鞅 局部鞅 局部绝对连续的概率测度 鞅变换 可料表示性 semi-martingale H^1 martingale local martingale local absolutely continuous probability measure martingale transform predictable representation
  • 相关文献

参考文献12

  • 1屈田兴,金治明.关于半鞅向量随机积分的两个结果[J].国防科技大学学报,2008,30(2):135-138. 被引量:2
  • 2Chemy A, Shi4-yaev A. On Stochastic Integrals up to Infinity and Predictable Criteria for Integrability [J]. Seminaire de Probabilities xxxVIII, 2005, 1857: 165- 185. 被引量:1
  • 3Shiryaev A N, Chemyi A S. Vector Stochastic Integrals and the Fundamental Theorems of Asset Pricing[J]. Tr. MIAN, 2002, 237:12-56. 被引量:1
  • 4何声武等著..半鞅与随机分析[M].北京:科学出版社,1995:580.
  • 5金治明编著..数学金融学基础 科学版[M].北京:科学出版社,2006:385.
  • 6Gmery M. Une Topologie Sur Lespaee Des Semimartingales[ J]. Lecture Notes in Mathem-aties, 1979, 721 : 152 - 160. 被引量:1
  • 7Memin J. Espaces de Semi-martingales Et Changement de Probabilite[J]. Zeitschrift fur Wahrscheinlichkeits-theorie und Verwandte Gebiete, 1980, 52:9 - 39. 被引量:1
  • 8Delbaen F, Schachermayer W. A General Version of the Fundamental Theorem of Asset Pricing[ J]. Mathemafische Anvalen, 1994, 300(3) :463 - 520. 被引量:1
  • 9Delbaen F, Sehachermayer W. The Fundamental Theorem of Asset Pricing for Unbounded Stochastic Processes [J]. Mathematical Annalen, 1998, 312: 215-250. 被引量:1
  • 10Chou C S. Caracterisation Dune Classe de Semimarfingales[J]. Lecture Notes in Mathemat-ics, 1979, 721 : 250 - 252. 被引量:1

二级参考文献4

  • 1[1]Shiryaev A N,Chernyi A S.Vector Stochastic Integrals and the Fundamental Theorems of Asset Pricing[J].Tr.MIAN,2002,237:12-56. 被引量:1
  • 2[2]Cherny A S.Vector Stochastic Integrals in the First Fundamental Theorem of Asset Pricing[C]//Proceedings of the Workshop on Mathematical Finance,INRIA,1998:149-163. 被引量:1
  • 3[5]Wilanskyn A.Mordern Methods in Topological Vector Spaces[M].Mc Graw-hills Inc.,1978. 被引量:1
  • 4[6]Emery M.Une Topologie Sur L'espace des Semimartingales[R].Lecture Notes in Mathematics,1979,721:260-280. 被引量:1

共引文献1

同被引文献7

  • 1屈田兴,金治明.关于半鞅向量随机积分的两个结果[J].国防科技大学学报,2008,30(2):135-138. 被引量:2
  • 2Shiryaev A N,Chernyi A S.Vector stochastic integrals and the fundamental theorems of asset pricing[J].Tr.MIAN,2002,237:12-56. 被引量:1
  • 3Delbaen F,Schachermayer W.A general version of the fundamental theorem of asset pricing[J].Mathematische Annalen,1994,300(3):463-520. 被引量:1
  • 4Delbaen F,Schachermayer W.The fundamental theorem of asset pricing for unbounded stochastic processes[J].Mathematical Annalen,1998,312:215-250. 被引量:1
  • 5Chou C S.Caractérisation d'une classe de semimartingales[J].Lecture Notes in Mathematics,1979,721:250-252. 被引量:1
  • 6Emery M.Compensation de processus a variation finie non localement integrables[J].Lecture Notes in mathematics,1980,784:152-160. 被引量:1
  • 7Yan J A.Introduction to martingale methods in option pricing[Z].LN in Math.4,Liu Bie Ju Centre for Mathematical Sciences,City University of Hong Kong,1998. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部