期刊文献+

新的二元互素序列的迹表示和线性复杂度 被引量:2

Trace Representations and Linear Complexity of New Binary Related-prime Sequences
下载PDF
导出
摘要 利用周期分别为奇素数p和q的Legendre序列构造大量新的周期为pq的二元序列,根据这些序列与Legendre序列在结构上的联系,给出它们的迹表示,依据E.L.Key方法得到其线性复杂度。结果表明该类序列具有良好的符号平衡性和线性复杂度性质,作为密钥流序列可抵抗Berlekamp-Massey算法的攻击。 Lots of new binary sequences of period p and q are presented. These sequences are formed with the Legendre sequences with the periods p and q, where p and q are different odd primes. Based on the constructive relation of these sequences with Legendre sequences, this paper obtains the trace presentations from their defining pairs. Linear complexity is calculated by E.L. Key method. The results show that these sequences possess better properties of symbol balance and linear complexity. Used as key streams, they can resist the attack from the application of the Berlekamp-Massey algorithm.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第5期137-139,142,共4页 Computer Engineering
基金 国家自然科学基金资助项目(60473028) 中科院开放课题基金资助项目
关键词 流密码 Legendre序列 Jacobi序列 迹表示 线性复杂度 stream cipher Legendre sequences Jacobi sequences trace representations linear complexity
  • 相关文献

参考文献6

  • 1Green D H, Green P R. Modified Jacobi Sequences[J]. IEE Proc. on Computer and Digital Technology, 2000, 147(4): 241-251. 被引量:1
  • 2Cusick T, Ding Cunsheng, Renvall A. Stream Ciphers and Number Theory[M]. [S. l.]: Elsevier Science Pub Co., 1998. 被引量:1
  • 3Bjerre D I. On the Randomness of Legendre and .lacobi Sequences[C]//Proc. of CRYPTO'88. Berlin, Germany: SpringerVerlag, 1990: 63-172. 被引量:1
  • 4Dai Zongduo, Gong Guang, Song Hong-yeop. Trace Representation of Binary Jacobi Sequences[Z]. (2002-10-10). http://www.eacr. math.uwaterlooca/-ggong. 被引量:1
  • 5Dai Zongduo, Gong Guang, Song Hong-yeop. Trace Representation of e-th Residue Sequences of Period p[J]. Reprint, 2002, 15(6): 36-38. 被引量:1
  • 6Kely E L. An Analysis of the Structure and Complexity of Nonlinear Binary Sequence Generators[J]. IEEE Trans. on Information Theory, 1976, 22(1): 732-736. 被引量:1

同被引文献22

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部