期刊文献+

基于小波变换的战场声信号去噪方法研究 被引量:1

Research on Denosing Methods of Battlefield Acoustic Signal Based on Wavelet Transform
下载PDF
导出
摘要 在实际战场中,采样声信号不可避免的受到各种噪声和干扰的污染,导致声信号特征提取变得困难而不利于进一步的目标识别。为了有效去除混叠在战场声信号中的噪声信号。运用离散小波理论对其进行阂值去嗓处理。通过对几种去噪方法对比分析和基于MATLAB信号去噪的仿真试验,仿真结果表明对于战场声信号而言,基于Birge—Massart阂值算法具有更好的去噪效果。 In the practical battlefield, sampling acoustic signals are inevitably influenced by noise, which makes it difficult to extract the feature of acoustic signal and hinder the further target discrimination. In order to effectively eliminate the noise signal mixed in the battlefield - acoustic signal, the discrete wavelet theory is applied to threshold denoising.ln comparison with several methods ofdenoiseing and via the simulated denoising experiments based on MALAB, simulation results show that when coping with the battlefield-acoustic signal, the method based on Birge-Massart threshold algorithm is better at denoising than other methods.
作者 仝飞 顾晓辉 吕艳新 TONG Fei, GU Xiao-hui, LV Yan-xin (School of Mechanical Engineering, Nanjing UniversiW of Science and Technology, Nanjing 210094, China)
出处 《电脑知识与技术》 2010年第2期939-941,共3页 Computer Knowledge and Technology
关键词 战场声信号 小波变换 阈值去噪 MATLAB 去噪 battlefield - acoustic signal wavelet transform thresholddenoising matlab denoising
  • 相关文献

参考文献7

二级参考文献35

  • 1焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996.. 被引量:115
  • 2孙桓.机械原理[M].北京:高等教育出版社,1995.. 被引量:35
  • 3焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996.. 被引量:51
  • 4陈德元.计算机辅助设备管理[M].西安:西北工业大学出版社,1991.. 被引量:1
  • 5中国设备管理协会.设备诊断技术与维修技术[M].煤炭机械杂志社,1989.. 被引量:1
  • 6Huang N E, Shen Zheng, Long S R, et ol. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proc. R. Soc. Lond. 1998, A:903-995. 被引量:1
  • 7Better Algorithms for Analyzing Nonlineat[EB/OL], Nonstationary Data.http://tco.gsfc.nasa.gov,. 被引量:1
  • 8CH Loh, Application of the empirical mode decomposition-Hilbert spectrum method to identify near-fault ground-motion charact-eristics and structural responses[J]. Bulletin of the Seismological Society of America, 2001, 91: 1339-1357. 被引量:1
  • 9Vasudevan K. Empirical mode skeletonization of deep crustal seismic data: Theory and applications[J]. Journal of Geophysical Research-Solid Earth, 2000, 105: 7845-7856. 被引量:1
  • 10Echeverria J C, Application of empirical mode decomposition to heart rate variability analysis[J], Medical & Biological Engneering & Computing, 2001, 39:471-479. 被引量:1

共引文献582

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部