期刊文献+

有限个广义渐近非扩张映射的公共不动点逼近 被引量:1

Approximation of common fixed points for finite families of general asymptotically nonexpansive mappings
下载PDF
导出
摘要 给出了一个具有误差项的逼近有限个广义渐近非扩张映射公共不动点的多步隐式迭代格式,在适当条件下证明了该迭代格式收敛的充分必要条件和强收敛定理.所得结论推广并改进了该领域内的一些最新结果. In this paper, a muhistep implicit iterative scheme with errors is proposed for approximation of common fixed points of the finite families of general asymptotically nonexpansive mappings, whose necessary and sufficient condition and strong convergence theorem for the common fixed points are proved under some parameters controlling conditions. The related results generalize and improve some newest conclusions in this field.
出处 《重庆工商大学学报(自然科学版)》 2010年第1期11-14,共4页 Journal of Chongqing Technology and Business University:Natural Science Edition
关键词 广义渐近非扩张映射 公共不动点 隐式迭代 强收敛 general asymptotically nonexpansive mappings common fixed points implicit iterative process strong convergence
  • 相关文献

参考文献8

  • 1SCHU J. Weak and strong convergence to fixed points of asymptotically nonexpansive mappings [ J ]. Bull Austral Math Soc, 1991, 43 : 153-159. 被引量:1
  • 2JEONG J U, KIM S H. Weak and strong convergence of the Ishikawa iteration process with errors for two asymptotically non-expansive mappings [ J ]. Appl Math Comput, 2006,181 : 1394-1401. 被引量:1
  • 3NOOR M A. New Approximation Schemes for General Variational Inequalities[ J] . J Math Anal Appl, 2000,251:217-229. 被引量:1
  • 4NILSRAKOO W, SAEJUNG S. A new three-step fixed point iteration schme for asymptotically nonexpansive mappings [ J ]. Appl Math Comput, 2006, 181:1026-1034. 被引量:1
  • 5CHANG S S, TAN K K, LEE H W J, et al. On the convergence of implicit iteration process with error for a finite family of asymptotically nonexpansive mappings [ J ]. J Math Anal Appl,2006,313:273-283. 被引量:1
  • 6CHIDUME C E, ALI B. Weak and strong convergence theorems for finite families of asymptotically nonexpansive mappings in Ba- nach spaces[J]. J Math Anal Appl, 2007, 330:377-387. 被引量:1
  • 7TAN K K, XU H K. Approximating fixed points of nonexpansive mappings by Ishikawa iteration process[ J]. J Math Anal Appl, 1993, 178:301-308. 被引量:1
  • 8CHIDUME C E, OFOEDU E U. Approximation of common fixed points for finite families of totoal asymptotically nonexpansive mappings[ J]. J Math Anal Appl, 2007,333:128-141. 被引量:1

同被引文献12

  • 1WEN D J, CHEN Y A. Strong Convergence of Modified General Iterative Method for Generalized Equilibrium Problems and Fixed Point Problems of k-strict Pseudo-contractions [ J ]. Fixed Point Theory and Appl,2012(2012) : 125. 被引量:1
  • 2KUROKAWA Y,TAKAHASHI W. Weak and Strong Convergence Theorems for Nonspreading Mappings in Hilbert Spaces [ J ]. Nonlinear Anal, 2010(73) : 1562-1568. 被引量:1
  • 3KANGTUNYAKARN A. The Methods for Variational Inequality Problems and Fixed Point of k-strictly Pseudononspreading Mapping[ J]. Fixed Point Theory and App1,2013(2013) : 171-175. 被引量:1
  • 4IEMOTO S,TAKAHASHI W. Approximating Commom Fixed Points of Nonexpansive Mappings and Nonspreading Mappings in a Hilbert Space[ J]. Nonlinear Anal,2009(71 ) : 2080-2089. 被引量:1
  • 5MARINO G, XU H K. Weak and Strong Convergence Theorems for Strict Pseudo-contractions in HilbertSpaces [ J ]. J Math Anal Appl,2007(329) : 336-346. 被引量:1
  • 6VERMA R U. General Convergence Analysis for Two-step Projection Methods and Applications to Variational Problems[ J]. Appl Math Lett,2005(18) : 1286-1292. 被引量:1
  • 7OSILIKE M O, ISIOGUGU F O. Weak and Strong Convergence Theorems for Nonspreading-type Mappings in Hilbert Spaces [ J ]. Nonlinear Anal ,2011 (74) : 1814-1822. 被引量:1
  • 8CENG L C, A1-HOMIDAN S, ANSARI Q H, et al. An Iterative Scheme for Equilibrium Problems and Fixed Point Problems of Strict Pseudo-contraction Mappings [ J ]. J Comput Appl Math,2009(223) : 967-974. 被引量:1
  • 9BLUM E, OETrLI W.-From Optimization and Variational Inequalities to Equilibrium Problems [ J]. Math Student, 1994( 63 ): 123-145. 被引量:1
  • 10谷峰.有限个平衡问题与非扩张映象不动点问题的复合迭代方法[J].系统科学与数学,2011,31(7):859-871. 被引量:4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部