期刊文献+

Effect of Air Gap on Dual-Tripler Broadband Third-Harmonic Generation

Effect of Air Gap on Dual-Tripler Broadband Third-Harmonic Generation
下载PDF
导出
摘要 We experimentally study the effect of the air gap on conversion efficiency and the spectrum of generated third-harmonic pulses in the dual-tripler broadband third-harmonic generation scheme. The experimental results are in good agreement with predictions that the 4-cm air gap is equivalent to a full cycle of phase mismatch among the three interacting pulses (i.e. the fundamental, second-harmonic and third-harmonic pulse). The experimental results also show that the spectrum of the third-harmonic pulse is sensitive to the air gap. We also point out that the air gap effect can be ignored when the dual-tripler system is located in 1000 Pa atmosphere. These results will guide the design of the broadband third-harmonic generation system in high power lasers. We experimentally study the effect of the air gap on conversion efficiency and the spectrum of generated third-harmonic pulses in the dual-tripler broadband third-harmonic generation scheme. The experimental results are in good agreement with predictions that the 4-cm air gap is equivalent to a full cycle of phase mismatch among the three interacting pulses (i.e. the fundamental, second-harmonic and third-harmonic pulse). The experimental results also show that the spectrum of the third-harmonic pulse is sensitive to the air gap. We also point out that the air gap effect can be ignored when the dual-tripler system is located in 1000 Pa atmosphere. These results will guide the design of the broadband third-harmonic generation system in high power lasers.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2010年第2期135-137,共3页 中国物理快报(英文版)
关键词 Chinese climate network complex systems small world COMMUNITY Chinese climate network, complex systems, small world, community
  • 相关文献

参考文献10

  • 1Seka W, Jacobs S D, Rizzo J E, Boni R and Craxton S D 1980 Opt. Commun. 34 469. 被引量:1
  • 2Murray J R, Smith J R, Ehrlich R B, Kyrazis D T, Thompson C E, Weiland T L and Wilcox R B 1989 J. Opt. Soc.Am. B 6 2402. 被引量:1
  • 3Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S and Soures J M 1989 J. Appl. Phys. 66 3456. 被引量:1
  • 4Skeldon M D, Craxton R S, Kessler T J, Seka W, Short R W, Skupsky S and Soures J M 1992 IEEE J. Quantum Electron. 28 1389. 被引量:1
  • 5Raoult F, Boscheron A C L, Husson D, Rouyer C, Sauteret C and Migus A 1999 Opt. Left. 24 354. 被引量:1
  • 6Han W, Zheng W, Yuan P, Qian L, Wang F, Yang Y, Feng B, Xiang Y, Li K and Li F 2008 Chin. Phys. Left. 25 4003. 被引量:1
  • 7Eimerl D, Auerbach J M, Barker C E, Milam D, and Milonni P W 1997 Opt. Lett. 22 1208. 被引量:1
  • 8Babushkin A, Craxton R S, Oskoui S, Guardalben M J, Keck R L and Seka W 1998 Opt. Left. 23 927. 被引量:1
  • 9Wegner P, Auerbach J, Biesiada T, Dixit S, Lawson J, Menapace J, Parham T, Swift D, Whitman P and Williams W 2004 SPIE 5341 180. 被引量:1
  • 10Born M and Wolf E 2007 Principles of Optics 7th edn p 76. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部